/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Morteza Jalalvand (IASBS) jalalvand.m AT gmail.com references: Espanol and Revenga, Phys Rev E 67, 026705 (2003) ------------------------------------------------------------------------- */ #include #include #include "pair_sdpd_taitwater_isothermal.h" #include "atom.h" #include "force.h" #include "comm.h" #include "neigh_list.h" #include "memory.h" #include "error.h" #include "domain.h" #include "update.h" #ifndef USE_ZEST #include "random_mars.h" #endif using namespace LAMMPS_NS; static const double sqrt_2_inv = std::sqrt(0.5); /* ---------------------------------------------------------------------- */ PairSDPDTaitwaterIsothermal::PairSDPDTaitwaterIsothermal (LAMMPS *lmp) : Pair (lmp) { restartinfo = 0; } /* ---------------------------------------------------------------------- */ PairSDPDTaitwaterIsothermal::~PairSDPDTaitwaterIsothermal () { if (allocated) { memory->destroy (setflag); memory->destroy (cutsq); memory->destroy (cut); memory->destroy (rho0); memory->destroy (soundspeed); memory->destroy (B); } } /* ---------------------------------------------------------------------- */ void PairSDPDTaitwaterIsothermal::compute (int eflag, int vflag) { int i, j, ii, jj, inum, jnum, itype, jtype; double xtmp, ytmp, ztmp, delx, dely, delz, fpair; int *ilist, *jlist, *numneigh, **firstneigh; double vxtmp, vytmp, vztmp, imass, jmass, fi, fj, fvisc; double h, ih, ihsq, velx, vely, velz; double rsq, tmp, wfd, delVdotDelR, deltaE; double prefactor, wiener[3][3], f_random[3]; if (eflag || vflag) ev_setup (eflag, vflag); else evflag = vflag_fdotr = 0; double **v = atom->vest; double **x = atom->x; double **f = atom->f; double *rho = atom->rho; double *mass = atom->mass; double *de = atom->de; double *drho = atom->drho; int *type = atom->type; int nlocal = atom->nlocal; int newton_pair = force->newton_pair; int dimension = domain->dimension; double dtinv = 1.0 / update->dt; double kBoltzmann = force->boltz; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; vxtmp = v[i][0]; vytmp = v[i][1]; vztmp = v[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; imass = mass[itype]; // compute pressure of atom i with Tait EOS tmp = rho[i] / rho0[itype]; fi = tmp * tmp * tmp; fi = B[itype] * (fi * fi * tmp - 1.0) / (rho[i] * rho[i]); for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; jtype = type[j]; jmass = mass[jtype]; if (rsq < cutsq[itype][jtype]) { h = cut[itype][jtype]; ih = 1.0 / h; ihsq = ih * ih; double r = sqrt (rsq); wfd = h - r; if (dimension == 3) { // Lucy Kernel, 3d // Note that wfd, the derivative of the weight function with respect to r, // is lacking a factor of r. // The missing factor of r is recovered by // (1) using delV . delX instead of delV . (delX/r) and // (2) using f[i][0] += delx * fpair instead of f[i][0] += (delx/r) * fpair wfd = -25.066903536973515383e0 * wfd * wfd * ihsq * ihsq * ihsq * ih; } else { // Lucy Kernel, 2d wfd = -19.098593171027440292e0 * wfd * wfd * ihsq * ihsq * ihsq; } // compute pressure of atom j with Tait EOS tmp = rho[j] / rho0[jtype]; fj = tmp * tmp * tmp; fj = B[jtype] * (fj * fj * tmp - 1.0) / (rho[j] * rho[j]); velx=vxtmp - v[j][0]; vely=vytmp - v[j][1]; velz=vztmp - v[j][2]; // dot product of velocity delta and distance vector delVdotDelR = delx * velx + dely * vely + delz * velz; // Espanol Viscosity (Espanol, 2003) fvisc = (5. / 3.) * viscosity * imass * jmass * wfd / (rho[i]*rho[j]); // total pair force fpair = -imass * jmass * (fi + fj) * wfd; // random force calculation // independent increments of a Wiener process matrix #ifdef USE_ZEST wiener[0][0] = gaussian (generator); wiener[1][1] = gaussian (generator); wiener[2][2] = gaussian (generator); wiener[0][1] = wiener[1][0] = sqrt_2_inv * gaussian (generator); wiener[0][2] = wiener[2][0] = sqrt_2_inv * gaussian (generator); wiener[1][2] = wiener[2][1] = sqrt_2_inv * gaussian (generator); #else wiener[0][0] = random->gaussian (); wiener[1][1] = random->gaussian (); wiener[2][2] = random->gaussian (); wiener[0][1] = wiener[1][0] = sqrt_2_inv * random->gaussian (); wiener[0][2] = wiener[2][0] = sqrt_2_inv * random->gaussian (); wiener[1][2] = wiener[2][1] = sqrt_2_inv * random->gaussian (); #endif prefactor = sqrt (-4. * kBoltzmann*temperature * fvisc * dtinv) / r; f_random[0] = prefactor * (wiener[0][0]*delx + wiener[0][1]*dely + wiener[0][2]*delz); f_random[1] = prefactor * (wiener[1][0]*delx + wiener[1][1]*dely + wiener[1][2]*delz); f_random[2] = prefactor * (wiener[2][0]*delx + wiener[2][1]*dely + wiener[2][2]*delz); f[i][0] += delx * fpair + (velx + delx * delVdotDelR / rsq) * fvisc + f_random[0]; f[i][1] += dely * fpair + (vely + dely * delVdotDelR / rsq) * fvisc + f_random[1]; f[i][2] += delz * fpair + (velz + delz * delVdotDelR / rsq) * fvisc + f_random[2]; // and change in density drho[i] += jmass * delVdotDelR * wfd; if (newton_pair || j < nlocal) { f[j][0] -= delx * fpair + (velx + delx * delVdotDelR / rsq) * fvisc + f_random[0]; f[j][1] -= dely * fpair + (vely + dely * delVdotDelR / rsq) * fvisc + f_random[1]; f[j][2] -= delz * fpair + (velz + delz * delVdotDelR / rsq) * fvisc + f_random[2]; drho[j] += imass * delVdotDelR * wfd; } if (evflag) ev_tally (i, j, nlocal, newton_pair, 0.0, 0.0, fpair, delx, dely, delz); } } } if (vflag_fdotr) virial_fdotr_compute (); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairSDPDTaitwaterIsothermal::allocate () { allocated = 1; int n = atom->ntypes; memory->create (setflag, n + 1, n + 1, "pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create (cutsq, n + 1, n + 1, "pair:cutsq"); memory->create (rho0, n + 1, "pair:rho0"); memory->create (soundspeed, n + 1, "pair:soundspeed"); memory->create (B, n + 1, "pair:B"); memory->create (cut, n + 1, n + 1, "pair:cut"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairSDPDTaitwaterIsothermal::settings (int narg, char **arg) { if (narg != 2 && narg != 3) error->all (FLERR, "Illegal number of setting " "arguments for pair_style sdpd/taitwater/morris/isothermal"); temperature = force->numeric (FLERR, arg[0]); viscosity = force->numeric (FLERR, arg[1]); if (temperature <= 0) error->all (FLERR, "Temperature must be positive"); if (viscosity <= 0) error->all (FLERR, "Viscosity must be positive"); // seed is immune to underflow/overflow because it is unsigned seed = comm->nprocs + comm->me + atom->nlocal; if (narg == 3) seed += force->inumeric (FLERR, arg[2]); #ifdef USE_ZEST generator.seed (seed); #else random = new RanMars (lmp, seed); #endif } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairSDPDTaitwaterIsothermal::coeff (int narg, char **arg) { if (narg != 5) error->all (FLERR, "Incorrect args for pair_style " "sph/taitwater/morris coefficients"); if (!allocated) allocate(); int ilo, ihi, jlo, jhi; force->bounds (FLERR, arg[0], atom->ntypes, ilo, ihi); force->bounds (FLERR, arg[1], atom->ntypes, jlo, jhi); double rho0_one = force->numeric (FLERR,arg[2]); double soundspeed_one = force->numeric (FLERR,arg[3]); double cut_one = force->numeric (FLERR,arg[4]); double B_one = soundspeed_one * soundspeed_one * rho0_one / 7.0; if (rho0_one <= 0) error->all (FLERR, "Density must be positive"); if (soundspeed_one <= 0) error->all (FLERR, "Sound speed must be positive"); if (cut_one <= 0) error->all (FLERR, "Cutoff must be positive"); int count = 0; for (int i = ilo; i <= ihi; i++) { rho0[i] = rho0_one; soundspeed[i] = soundspeed_one; B[i] = B_one; for (int j = MAX(jlo,i); j <= jhi; j++) { cut[i][j] = cut_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairSDPDTaitwaterIsothermal::init_one (int i, int j) { if (setflag[i][j] == 0) error->all(FLERR,"Not all pair sph/taitwater/morris coeffs are not set"); cut[j][i] = cut[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- */ double PairSDPDTaitwaterIsothermal::single (int /*i*/, int /*j*/, int /*itype*/, int /*jtype*/, double /*rsq*/, double /*factor_coul*/, double /*factor_lj*/, double &fforce) { fforce = 0.0; return 0.0; }