// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Mike Parks (SNL) ------------------------------------------------------------------------- */ #include "pair_peri_pmb.h" #include "atom.h" #include "comm.h" #include "domain.h" #include "error.h" #include "fix_peri_neigh.h" #include "force.h" #include "lattice.h" #include "memory.h" #include "neigh_list.h" #include #include using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairPeriPMB::PairPeriPMB(LAMMPS *_lmp) : PairPeri(_lmp) { single_enable = 1; } /* ---------------------------------------------------------------------- */ void PairPeriPMB::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz; double xtmp0,ytmp0,ztmp0,delx0,dely0,delz0,rsq0; double rsq,r,dr,rk,evdwl,fpair,fbond; int *ilist,*jlist,*numneigh,**firstneigh; double d_ij,delta,stretch; evdwl = 0.0; ev_init(eflag,vflag); double **f = atom->f; double **x = atom->x; int *type = atom->type; int nlocal = atom->nlocal; double *vfrac = atom->vfrac; double *s0 = atom->s0; double **x0 = atom->x0; double **r0 = fix_peri_neigh->r0; tagint **partner = fix_peri_neigh->partner; int *npartner = fix_peri_neigh->npartner; // lc = lattice constant // init_style guarantees it's the same in x, y, and z double lc = domain->lattice->xlattice; double half_lc = 0.5*lc; double vfrac_scale = 1.0; // short-range forces int newton_pair = force->newton_pair; int periodic = (domain->xperiodic || domain->yperiodic || domain->zperiodic); inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms // need minimg() for x0 difference since not ghosted for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; xtmp0 = x0[i][0]; ytmp0 = x0[i][1]; ztmp0 = x0[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; delx0 = xtmp0 - x0[j][0]; dely0 = ytmp0 - x0[j][1]; delz0 = ztmp0 - x0[j][2]; if (periodic) domain->minimum_image(delx0,dely0,delz0); rsq0 = delx0*delx0 + dely0*dely0 + delz0*delz0; jtype = type[j]; r = sqrt(rsq); // short-range interaction distance based on initial particle position // 0.9 and 1.35 are constants d_ij = MIN(0.9*sqrt(rsq0),1.35*lc); // short-range contact forces // 15 is constant taken from the EMU Theory Manual // Silling, 12 May 2005, p 18 if (r < d_ij) { dr = r - d_ij; rk = (15.0 * kspring[itype][jtype] * vfrac[j]) * (dr / cut[itype][jtype]); if (r > 0.0) fpair = -(rk/r); else fpair = 0.0; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) evdwl = 0.5*rk*dr; if (evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0, fpair*vfrac[i],delx,dely,delz); } } } // grow bond forces array if necessary if (atom->nmax > nmax) { memory->destroy(s0_new); nmax = atom->nmax; memory->create(s0_new,nmax,"pair:s0_new"); } // loop over my particles and their partners // partner list contains all bond partners, so I-J appears twice // if bond already broken, skip this partner // first = true if this is first neighbor of particle i bool first; for (i = 0; i < nlocal; i++) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jnum = npartner[i]; s0_new[i] = DBL_MAX; first = true; for (jj = 0; jj < jnum; jj++) { if (partner[i][jj] == 0) continue; j = atom->map(partner[i][jj]); // check if lost a partner without first breaking bond if (j < 0) { partner[i][jj] = 0; continue; } // compute force density, add to PD equation of motion delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; if (periodic) domain->minimum_image(delx,dely,delz); rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; delta = cut[itype][jtype]; r = sqrt(rsq); dr = r - r0[i][jj]; // avoid roundoff errors if (fabs(dr) < NEAR_ZERO) dr = 0.0; // scale vfrac[j] if particle j near the horizon if ((fabs(r0[i][jj] - delta)) <= half_lc) vfrac_scale = (-1.0/(2*half_lc))*(r0[i][jj]) + (1.0 + ((delta - half_lc)/(2*half_lc) ) ); else vfrac_scale = 1.0; stretch = dr / r0[i][jj]; rk = (kspring[itype][jtype] * vfrac[j]) * vfrac_scale * stretch; if (r > 0.0) fbond = -(rk/r); else fbond = 0.0; f[i][0] += delx*fbond; f[i][1] += dely*fbond; f[i][2] += delz*fbond; // since I-J is double counted, set newton off & use 1/2 factor and I,I if (eflag) evdwl = 0.5*rk*dr; if (evflag) ev_tally(i,i,nlocal,0,0.5*evdwl,0.0,0.5*fbond*vfrac[i],delx,dely,delz); // find stretch in bond I-J and break if necessary // use s0 from previous timestep if (stretch > MIN(s0[i],s0[j])) partner[i][jj] = 0; // update s0 for next timestep if (first) s0_new[i] = s00[itype][jtype] - (alpha[itype][jtype] * stretch); else s0_new[i] = MAX(s0_new[i],s00[itype][jtype] - (alpha[itype][jtype] * stretch)); first = false; } } // store new s0 for (i = 0; i < nlocal; i++) s0[i] = s0_new[i]; } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairPeriPMB::coeff(int narg, char **arg) { if (narg != 6) error->all(FLERR,"Incorrect args for pair coefficients"); if (!allocated) allocate(); int ilo,ihi,jlo,jhi; utils::bounds(FLERR,arg[0],1,atom->ntypes,ilo,ihi,error); utils::bounds(FLERR,arg[1],1,atom->ntypes,jlo,jhi,error); double kspring_one = utils::numeric(FLERR,arg[2],false,lmp); double cut_one = utils::numeric(FLERR,arg[3],false,lmp); double s00_one = utils::numeric(FLERR,arg[4],false,lmp); double alpha_one = utils::numeric(FLERR,arg[5],false,lmp); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { kspring[i][j] = kspring_one; s00[i][j] = s00_one; alpha[i][j] = alpha_one; cut[i][j] = cut_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairPeriPMB::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set"); kspring[j][i] = kspring[i][j]; alpha[j][i] = alpha[i][j]; s00[j][i] = s00[i][j]; cut[j][i] = cut[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairPeriPMB::write_restart(FILE *fp) { int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j],sizeof(int),1,fp); if (setflag[i][j]) { fwrite(&kspring[i][j],sizeof(double),1,fp); fwrite(&s00[i][j],sizeof(double),1,fp); fwrite(&alpha[i][j],sizeof(double),1,fp); fwrite(&cut[i][j],sizeof(double),1,fp); } } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairPeriPMB::read_restart(FILE *fp) { allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) utils::sfread(FLERR,&setflag[i][j],sizeof(int),1,fp,nullptr,error); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); if (setflag[i][j]) { if (me == 0) { utils::sfread(FLERR,&kspring[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&s00[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&alpha[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&cut[i][j],sizeof(double),1,fp,nullptr,error); } MPI_Bcast(&kspring[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&s00[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&alpha[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world); } } } /* ---------------------------------------------------------------------- */ double PairPeriPMB::single(int i, int j, int itype, int jtype, double rsq, double /*factor_coul*/, double /*factor_lj*/, double &fforce) { double delx0,dely0,delz0,rsq0; double d_ij,r,dr,rk,vfrac_scale; double *vfrac = atom->vfrac; double **x0 = atom->x0; double **r0 = fix_peri_neigh->r0; tagint **partner = fix_peri_neigh->partner; int *npartner = fix_peri_neigh->npartner; double lc = domain->lattice->xlattice; double half_lc = 0.5*lc; delx0 = x0[i][0] - x0[j][0]; dely0 = x0[i][1] - x0[j][1]; delz0 = x0[i][2] - x0[j][2]; int periodic = domain->xperiodic || domain->yperiodic || domain->zperiodic; if (periodic) domain->minimum_image(delx0,dely0,delz0); rsq0 = delx0*delx0 + dely0*dely0 + delz0*delz0; d_ij = MIN(0.9*sqrt(rsq0),1.35*lc); r = sqrt(rsq); double energy = 0.0; fforce = 0.0; if (r < d_ij) { dr = r - d_ij; rk = (15.0 * kspring[itype][jtype] * vfrac[j]) * (dr / sqrt(cutsq[itype][jtype])); if (r > 0.0) fforce += -(rk/r); energy += 0.5*rk*dr; } int jnum = npartner[i]; for (int jj = 0; jj < jnum; jj++) { if (partner[i][jj] == 0) continue; if (j < 0) continue; if (j == atom->map(partner[i][jj])) { dr = r - r0[i][jj]; if (fabs(dr) < NEAR_ZERO) dr = 0.0; if ( (fabs(r0[i][jj] - sqrt(cutsq[itype][jtype]))) <= half_lc) vfrac_scale = (-1.0/(2*half_lc))*(r0[i][jj]) + (1.0 + ((sqrt(cutsq[itype][jtype]) - half_lc)/(2*half_lc))); else vfrac_scale = 1.0; rk = (kspring[itype][jtype] * vfrac[j] * vfrac_scale) * (dr / r0[i][jj]); if (r > 0.0) fforce += -(rk/r); energy += 0.5*rk*dr; } } return energy; }