// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_chunk_spread_atom.h" #include "arg_info.h" #include "atom.h" #include "compute.h" #include "compute_chunk_atom.h" #include "error.h" #include "fix.h" #include "memory.h" #include "modify.h" #include "update.h" #include using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeChunkSpreadAtom:: ComputeChunkSpreadAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), idchunk(nullptr) { if (narg < 5) error->all(FLERR,"Illegal compute chunk/spread/atom command"); // ID of compute chunk/atom idchunk = utils::strdup(arg[3]); init_chunk(); // expand args if any have wildcard character "*" int iarg = 4; int expand = 0; char **earg; int nargnew = utils::expand_args(FLERR,narg-iarg,&arg[iarg],1,earg,lmp); if (earg != &arg[iarg]) expand = 1; arg = earg; // parse values values.clear(); for (iarg = 0; iarg < nargnew; ++iarg) { ArgInfo argi(arg[iarg], ArgInfo::COMPUTE|ArgInfo::FIX); value_t val; val.which = argi.get_type(); val.argindex = argi.get_index1(); val.id = argi.get_name(); val.val.c = nullptr; if ((val.which == ArgInfo::UNKNOWN) || (val.which == ArgInfo::NONE) || (argi.get_dim() > 1)) error->all(FLERR,"Illegal compute chunk/spread/atom argument: {}", arg[iarg]); values.push_back(val); } // if wildcard expansion occurred, free earg memory from expand_args() if (expand) { for (int i = 0; i < nargnew; i++) delete[] earg[i]; memory->sfree(earg); } // setup and error check // for compute, must calculate per-chunk values, i.e. style ends in "/chunk" // for fix, assume a global vector or array is per-chunk data for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { auto icompute = modify->get_compute_by_id(val.id); if (!icompute) error->all(FLERR,"Compute ID {} for compute chunk/spread/atom does not exist", val.id); if (!utils::strmatch(icompute->style,"/chunk$")) error->all(FLERR,"Compute chunk/spread/atom compute {} does not calculate per-chunk values", val.id); if (val.argindex == 0) { if (!icompute->vector_flag) error->all(FLERR,"Compute chunk/spread/atom compute {} does not calculate global vector", val.id); } else { if (!icompute->array_flag) error->all(FLERR,"Compute chunk/spread/atom compute {} does not calculate global array", val.id); if (val.argindex > icompute->size_array_cols) error->all(FLERR,"Compute chunk/spread/atom compute {} array is accessed out-of-range", val.id); } val.val.c = icompute; } else if (val.which == ArgInfo::FIX) { auto ifix = modify->get_fix_by_id(val.id); if (ifix) error->all(FLERR,"Fix ID {} for compute chunk/spread/atom does not exist", val.id); if (val.argindex == 0) { if (!ifix->vector_flag) error->all(FLERR,"Compute chunk/spread/atom {} fix does not calculate global vector", val.id); } else { if (!ifix->array_flag) error->all(FLERR,"Compute chunk/spread/atom {} fix does not calculate global array", val.id); if (val.argindex > ifix->size_array_cols) error->all(FLERR,"Compute chunk/spread/atom fix {} array is accessed out-of-range", val.id); } } } // this compute produces a peratom vector or array peratom_flag = 1; if (values.size() == 1) size_peratom_cols = 0; else size_peratom_cols = values.size(); // per-atom vector or array nmax = 0; vector_atom = nullptr; array_atom = nullptr; } /* ---------------------------------------------------------------------- */ ComputeChunkSpreadAtom::~ComputeChunkSpreadAtom() { delete[] idchunk; memory->destroy(vector_atom); memory->destroy(array_atom); } /* ---------------------------------------------------------------------- */ void ComputeChunkSpreadAtom::init() { init_chunk(); // store references of all computes and fixes for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR,"Compute ID {} for compute chunk/spread/atom does not exist", val.id); } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR,"Fix ID {} for compute chunk/spread/atom does not exist", val.id); } } } /* ---------------------------------------------------------------------- */ void ComputeChunkSpreadAtom::init_chunk() { cchunk = dynamic_cast(modify->get_compute_by_id(idchunk)); if (!cchunk) error->all(FLERR,"Chunk/atom compute {} does not exist for compute chunk/spread/atom " "or is of invalid style", idchunk); if (strcmp(cchunk->style,"chunk/atom") != 0) error->all(FLERR,"Compute chunk/spread/atom {} does not use chunk/atom compute", idchunk); } /* ---------------------------------------------------------------------- */ void ComputeChunkSpreadAtom::compute_peratom() { invoked_peratom = update->ntimestep; // grow local vector_atom or array_atom if necessary if (atom->nmax > nmax) { if (values.size() == 1) { memory->destroy(vector_atom); nmax = atom->nmax; memory->create(vector_atom,nmax,"chunk/spread/atom:vector_atom"); } else { memory->destroy(array_atom); nmax = atom->nmax; memory->create(array_atom,nmax,values.size(),"chunk/spread/atom:array_atom"); } } // compute chunk/atom assigns atoms to chunk IDs // extract ichunk index vector from compute // ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms int nchunk = cchunk->setup_chunks(); cchunk->compute_ichunk(); int *ichunk = cchunk->ichunk; // loop over values, access compute or fix // loop over atoms, use chunk ID of each atom to store value from compute/fix int *mask = atom->mask; int nlocal = atom->nlocal; int index,nstride; double *ptr; int m = 0; for (auto &val : values) { // copy compute/fix values into vector_atom or array_atom // nstride between values for each atom if (values.size() == 1) { ptr = vector_atom; nstride = 1; } else { ptr = &array_atom[0][m]; nstride = values.size(); } // invoke compute if not previously invoked if (val.which == ArgInfo::COMPUTE) { Compute *compute = val.val.c; if (val.argindex == 0) { if (!(compute->invoked_flag & Compute::INVOKED_VECTOR)) { compute->compute_vector(); compute->invoked_flag |= Compute::INVOKED_VECTOR; } double *cvector = compute->vector; for (int i = 0; i < nlocal; i++, ptr += nstride) { *ptr = 0.0; if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0 || index >= nchunk) continue; *ptr = cvector[index]; } } else { if (!(compute->invoked_flag & Compute::INVOKED_ARRAY)) { compute->compute_array(); compute->invoked_flag |= Compute::INVOKED_ARRAY; } int icol = val.argindex-1; double **carray = compute->array; for (int i = 0; i < nlocal; i++, ptr += nstride) { *ptr = 0.0; if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0 || index >= nchunk) continue; *ptr = carray[index][icol]; } } // access fix data, check if fix frequency is a match // are assuming the fix global vector/array is per-chunk data // check if index exceeds fix output length/rows } else if (val.which == ArgInfo::FIX) { Fix *fix = val.val.f; if (update->ntimestep % fix->global_freq) error->all(FLERR,"Fix {} used in compute chunk/spread/atom not computed at compatible time", val.id); if (val.argindex == 0) { int nfix = fix->size_vector; for (int i = 0; i < nlocal; i++, ptr += nstride) { *ptr = 0.0; if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0 || index >= nchunk || index >= nfix) continue; *ptr = fix->compute_vector(index); } } else { int icol = val.argindex-1; int nfix = fix->size_array_rows; for (int i = 0; i < nlocal; i++, ptr += nstride) { *ptr = 0.0; if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0 || index >= nchunk || index >= nfix) continue; *ptr = fix->compute_array(index,icol); } } } ++m; } } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double ComputeChunkSpreadAtom::memory_usage() { double bytes = (double)nmax*values.size() * sizeof(double); bytes += values.size() * sizeof(value_t); return bytes; }