/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator www.cs.sandia.gov/~sjplimp/lammps.html Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "mpi.h" #include "compute_temp_dipole.h" #include "atom.h" #include "force.h" #include "domain.h" #include "group.h" #include "modify.h" #include "fix.h" #include "error.h" using namespace LAMMPS_NS; // moment of inertia for a sphere #define INERTIA 0.4 /* ---------------------------------------------------------------------- */ ComputeTempDipole::ComputeTempDipole(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg) { if (narg != 3) error->all("Illegal compute temp/dipole command"); if (!atom->omega_flag || atom->shape == NULL) error->all("Compute temp/dipole requires atom attributes omega, shape"); scalar_flag = vector_flag = 1; size_vector = 6; extensive = 0; tempflag = 1; vector = new double[6]; inertia = new double[atom->ntypes + 1]; } /* ---------------------------------------------------------------------- */ ComputeTempDipole::~ComputeTempDipole() { delete [] vector; delete [] inertia; } /* ---------------------------------------------------------------------- */ void ComputeTempDipole::init() { fix_dof = 0; for (int i = 0; i < modify->nfix; i++) fix_dof += modify->fix[i]->dof(igroup); recount(); // moment of inertia for each particle type double *mass = atom->mass; double **shape = atom->shape; for (int i = 1; i <= atom->ntypes; i++) inertia[i] = INERTIA * mass[i] * 0.25*shape[i][0]*shape[i][0]; } /* ---------------------------------------------------------------------- */ void ComputeTempDipole::recount() { double natoms = group->count(igroup); dof = 2.0 * domain->dimension * natoms; dof -= extra_dof + fix_dof; if (dof > 0) tfactor = force->mvv2e / (dof * force->boltz); else tfactor = 0.0; } /* ---------------------------------------------------------------------- */ double ComputeTempDipole::compute_scalar() { double **v = atom->v; double *mass = atom->mass; double **omega = atom->omega; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; // rotational and translational kinetic energy double t = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) t += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * mass[type[i]] + (omega[i][0] * omega[i][0] + omega[i][1] * omega[i][1] + omega[i][2] * omega[i][2]) * inertia[type[i]]; MPI_Allreduce(&t,&scalar,1,MPI_DOUBLE,MPI_SUM,world); if (dynamic) recount(); scalar *= tfactor; return scalar; } /* ---------------------------------------------------------------------- */ void ComputeTempDipole::compute_vector() { int i; double **v = atom->v; double *mass = atom->mass; double **omega = atom->omega; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; double rmass,imass,t[6]; for (i = 0; i < 6; i++) t[i] = 0.0; // rotational and translational kinetic energy for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { rmass = mass[type[i]]; imass = inertia[type[i]]; t[0] += rmass*v[i][0]*v[i][0] + imass*omega[i][0]*omega[i][0]; t[1] += rmass*v[i][1]*v[i][1] + imass*omega[i][1]*omega[i][1]; t[2] += rmass*v[i][2]*v[i][2] + imass*omega[i][2]*omega[i][2]; t[3] += rmass*v[i][0]*v[i][1] + imass*omega[i][0]*omega[i][1]; t[4] += rmass*v[i][0]*v[i][2] + imass*omega[i][0]*omega[i][2]; t[5] += rmass*v[i][1]*v[i][2] + imass*omega[i][1]*omega[i][2]; } MPI_Allreduce(&t,&vector,6,MPI_DOUBLE,MPI_SUM,world); for (i = 0; i < 6; i++) vector[i] *= force->mvv2e; }