/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_gyration_chunk.h" #include "atom.h" #include "compute_chunk_atom.h" #include "domain.h" #include "error.h" #include "memory.h" #include #include using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeGyrationChunk::ComputeGyrationChunk(LAMMPS *lmp, int narg, char **arg) : ComputeChunk(lmp, narg, arg), massproc(nullptr), masstotal(nullptr), com(nullptr), comall(nullptr), rg(nullptr), rgall(nullptr), rgt(nullptr), rgtall(nullptr) { ComputeGyrationChunk::init(); // optional args tensor = 0; int iarg = 4; while (iarg < narg) { if (strcmp(arg[iarg], "tensor") == 0) { tensor = 1; iarg++; } else error->all(FLERR, "Illegal compute gyration/chunk command"); } if (tensor) { array_flag = 1; size_array_cols = 6; size_array_rows = 0; size_array_rows_variable = 1; extarray = 0; } else { vector_flag = 1; size_vector = 0; size_vector_variable = 1; extvector = 0; } ComputeGyrationChunk::allocate(); } /* ---------------------------------------------------------------------- */ ComputeGyrationChunk::~ComputeGyrationChunk() { memory->destroy(massproc); memory->destroy(masstotal); memory->destroy(com); memory->destroy(comall); memory->destroy(rg); memory->destroy(rgall); memory->destroy(rgt); memory->destroy(rgtall); } /* ---------------------------------------------------------------------- */ void ComputeGyrationChunk::compute_vector() { int i, index; double dx, dy, dz, massone; double unwrap[3]; ComputeChunk::compute_vector(); com_chunk(); int *ichunk = cchunk->ichunk; for (i = 0; i < nchunk; i++) rg[i] = 0.0; // compute Rg for each chunk double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { index = ichunk[i] - 1; if (index < 0) continue; domain->unmap(x[i], image[i], unwrap); dx = unwrap[0] - comall[index][0]; dy = unwrap[1] - comall[index][1]; dz = unwrap[2] - comall[index][2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; rg[index] += (dx * dx + dy * dy + dz * dz) * massone; } MPI_Allreduce(rg, rgall, nchunk, MPI_DOUBLE, MPI_SUM, world); for (i = 0; i < nchunk; i++) if (masstotal[i] > 0.0) rgall[i] = sqrt(rgall[i] / masstotal[i]); } /* ---------------------------------------------------------------------- */ void ComputeGyrationChunk::compute_array() { int i, j, index; double dx, dy, dz, massone; double unwrap[3]; ComputeChunk::compute_array(); com_chunk(); int *ichunk = cchunk->ichunk; for (i = 0; i < nchunk; i++) for (j = 0; j < 6; j++) rgt[i][j] = 0.0; double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { index = ichunk[i] - 1; if (index < 0) continue; domain->unmap(x[i], image[i], unwrap); dx = unwrap[0] - comall[index][0]; dy = unwrap[1] - comall[index][1]; dz = unwrap[2] - comall[index][2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; rgt[index][0] += dx * dx * massone; rgt[index][1] += dy * dy * massone; rgt[index][2] += dz * dz * massone; rgt[index][3] += dx * dy * massone; rgt[index][4] += dx * dz * massone; rgt[index][5] += dy * dz * massone; } if (nchunk) MPI_Allreduce(&rgt[0][0], &rgtall[0][0], nchunk * 6, MPI_DOUBLE, MPI_SUM, world); for (i = 0; i < nchunk; i++) { if (masstotal[i] > 0.0) { for (j = 0; j < 6; j++) rgtall[i][j] = rgtall[i][j] / masstotal[i]; } } } /* ---------------------------------------------------------------------- calculate per-chunk COM, used by both scalar and tensor ------------------------------------------------------------------------- */ void ComputeGyrationChunk::com_chunk() { int index; double massone; double unwrap[3]; int *ichunk = cchunk->ichunk; // zero local per-chunk values for (int i = 0; i < nchunk; i++) { massproc[i] = 0.0; com[i][0] = com[i][1] = com[i][2] = 0.0; } // compute COM for each chunk double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { index = ichunk[i] - 1; if (index < 0) continue; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; domain->unmap(x[i], image[i], unwrap); massproc[index] += massone; com[index][0] += unwrap[0] * massone; com[index][1] += unwrap[1] * massone; com[index][2] += unwrap[2] * massone; } MPI_Allreduce(massproc, masstotal, nchunk, MPI_DOUBLE, MPI_SUM, world); MPI_Allreduce(&com[0][0], &comall[0][0], 3 * nchunk, MPI_DOUBLE, MPI_SUM, world); for (int i = 0; i < nchunk; i++) { if (masstotal[i] > 0.0) { comall[i][0] /= masstotal[i]; comall[i][1] /= masstotal[i]; comall[i][2] /= masstotal[i]; } } } /* ---------------------------------------------------------------------- free and reallocate per-chunk arrays ------------------------------------------------------------------------- */ void ComputeGyrationChunk::allocate() { ComputeChunk::allocate(); memory->destroy(massproc); memory->destroy(masstotal); memory->destroy(com); memory->destroy(comall); memory->destroy(rg); memory->destroy(rgall); memory->destroy(rgt); memory->destroy(rgtall); maxchunk = nchunk; memory->create(massproc, maxchunk, "gyration/chunk:massproc"); memory->create(masstotal, maxchunk, "gyration/chunk:masstotal"); memory->create(com, maxchunk, 3, "gyration/chunk:com"); memory->create(comall, maxchunk, 3, "gyration/chunk:comall"); if (tensor) { memory->create(rgt, maxchunk, 6, "gyration/chunk:rgt"); memory->create(rgtall, maxchunk, 6, "gyration/chunk:rgtall"); array = rgtall; } else { memory->create(rg, maxchunk, "gyration/chunk:rg"); memory->create(rgall, maxchunk, "gyration/chunk:rgall"); vector = rgall; } } /* ---------------------------------------------------------------------- memory usage of local data ------------------------------------------------------------------------- */ double ComputeGyrationChunk::memory_usage() { double bytes = ComputeChunk::memory_usage(); bytes += (bigint) maxchunk * 2 * sizeof(double); bytes += (double) maxchunk * 2 * 3 * sizeof(double); if (tensor) bytes += (double) maxchunk * 2 * 6 * sizeof(double); else bytes += (double) maxchunk * 2 * sizeof(double); return bytes; }