/// -*- c++ -*- #include "colvarmodule.h" #include "colvarparse.h" #include "colvaratoms.h" cvm::atom::atom() { index = -1; id = -1; reset_data(); } cvm::atom::atom(int atom_number) { colvarproxy *p = cvm::proxy; index = p->init_atom(atom_number); if (cvm::debug()) { cvm::log("The index of this atom in the colvarproxy arrays is "+ cvm::to_str(index)+".\n"); } id = p->get_atom_id(index); update_mass(); reset_data(); } cvm::atom::atom(cvm::residue_id const &residue, std::string const &atom_name, std::string const &segment_id) { colvarproxy *p = cvm::proxy; index = p->init_atom(residue, atom_name, segment_id); if (cvm::debug()) { cvm::log("The index of this atom in the colvarproxy_namd arrays is "+ cvm::to_str(index)+".\n"); } id = p->get_atom_id(index); update_mass(); reset_data(); } cvm::atom::atom(atom const &a) : index(a.index) { id = (cvm::proxy)->get_atom_id(index); update_mass(); reset_data(); } cvm::atom::~atom() { if (index >= 0) { (cvm::proxy)->clear_atom(index); } } // TODO change this arrangement // Note: "conf" is the configuration of the cvc who is using this atom group; // "key" is the name of the atom group (e.g. "atoms", "group1", "group2", ...) cvm::atom_group::atom_group(std::string const &conf, char const *key_in) { key = key_in; cvm::log("Defining atom group \""+ std::string(key)+"\".\n"); init(); // real work is done by parse parse(conf); setup(); } cvm::atom_group::atom_group(std::vector const &atoms_in) { init(); atoms = atoms_in; setup(); } cvm::atom_group::atom_group() { init(); } cvm::atom_group::~atom_group() { if (index >= 0) { (cvm::proxy)->clear_atom_group(index); } if (ref_pos_group) { delete ref_pos_group; ref_pos_group = NULL; } } int cvm::atom_group::add_atom(cvm::atom const &a) { if (a.id < 0) { return COLVARS_ERROR; } for (size_t i = 0; i < atoms_ids.size(); i++) { if (atoms_ids[i] == a.id) { if (cvm::debug()) cvm::log("Discarding doubly counted atom with number "+ cvm::to_str(a.id+1)+".\n"); return COLVARS_OK; } } // for consistency with add_atom_id(), we update the list as well atoms_ids.push_back(a.id); atoms.push_back(a); total_mass += a.mass; total_charge += a.charge; return COLVARS_OK; } int cvm::atom_group::add_atom_id(int aid) { if (aid < 0) { return COLVARS_ERROR; } for (size_t i = 0; i < atoms_ids.size(); i++) { if (atoms_ids[i] == aid) { if (cvm::debug()) cvm::log("Discarding doubly counted atom with number "+ cvm::to_str(aid+1)+".\n"); return COLVARS_OK; } } atoms_ids.push_back(aid); return COLVARS_OK; } int cvm::atom_group::remove_atom(cvm::atom_iter ai) { if (b_scalable) { cvm::error("Error: cannot remove atoms from a scalable group.\n", INPUT_ERROR); return COLVARS_ERROR; } if (!this->size()) { cvm::error("Error: trying to remove an atom from an empty group.\n", INPUT_ERROR); return COLVARS_ERROR; } else { total_mass -= ai->mass; total_charge -= ai->charge; atoms_ids.erase(atoms_ids.begin() + (ai - atoms.begin())); atoms.erase(ai); } return COLVARS_OK; } int cvm::atom_group::init() { if (!key.size()) key = "atoms"; atoms.clear(); b_scalable = false; index = -1; b_center = false; b_rotate = false; b_user_defined_fit = false; b_fit_gradients = false; ref_pos_group = NULL; noforce = false; total_mass = 0.0; total_charge = 0.0; cog.reset(); com.reset(); return COLVARS_OK; } int cvm::atom_group::setup() { for (cvm::atom_iter ai = atoms.begin(); ai != atoms.end(); ai++) { ai->update_mass(); ai->update_charge(); } update_total_mass(); update_total_charge(); return COLVARS_OK; } void cvm::atom_group::update_total_mass() { if (b_dummy) { total_mass = 1.0; return; } if (b_scalable) { total_mass = (cvm::proxy)->get_atom_group_mass(index); } else { total_mass = 0.0; for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { total_mass += ai->mass; } } } void cvm::atom_group::reset_mass(std::string &name, int i, int j) { update_total_mass(); cvm::log("Re-initialized atom group "+name+":"+cvm::to_str(i)+"/"+ cvm::to_str(j)+". "+ cvm::to_str(atoms_ids.size())+ " atoms: total mass = "+cvm::to_str(total_mass)+".\n"); } void cvm::atom_group::update_total_charge() { if (b_dummy) { total_charge = 0.0; return; } if (b_scalable) { total_charge = (cvm::proxy)->get_atom_group_charge(index); } else { total_charge = 0.0; for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { total_charge += ai->charge; } } } int cvm::atom_group::parse(std::string const &conf) { std::string group_conf; // TODO move this to the cvc class constructor/init // save_delimiters is set to false for this call, because "conf" is // not the config string of this group, but of its parent object // (which has already taken care of the delimiters) save_delimiters = false; key_lookup(conf, key.c_str(), group_conf, dummy_pos); // restoring the normal value, because we do want keywords checked // inside "group_conf" save_delimiters = true; if (group_conf.size() == 0) { cvm::error("Error: atom group \""+key+ "\" is set, but has no definition.\n", INPUT_ERROR); return COLVARS_ERROR; } cvm::increase_depth(); cvm::log("Initializing atom group \""+key+"\".\n"); // whether or not to include messages in the log // colvarparse::Parse_Mode mode = parse_silent; // { // bool b_verbose; // get_keyval (group_conf, "verboseOutput", b_verbose, false, parse_silent); // if (b_verbose) mode = parse_normal; // } // colvarparse::Parse_Mode mode = parse_normal; int parse_error = COLVARS_OK; // if the cvc allows it, the flag has been set to true by default get_keyval(group_conf, "scalable", b_scalable, b_scalable); { std::string numbers_conf = ""; size_t pos = 0; while (key_lookup(group_conf, "atomNumbers", numbers_conf, pos)) { parse_error |= add_atom_numbers(numbers_conf); numbers_conf = ""; } } { std::string index_group_name; if (get_keyval(group_conf, "indexGroup", index_group_name)) { // use an index group from the index file read globally parse_error |= add_index_group(index_group_name); } } { std::string range_conf = ""; size_t pos = 0; while (key_lookup(group_conf, "atomNumbersRange", range_conf, pos)) { parse_error |= add_atom_numbers_range(range_conf); range_conf = ""; } } { std::vector psf_segids; get_keyval(group_conf, "psfSegID", psf_segids, std::vector()); std::vector::iterator psii; for (psii = psf_segids.begin(); psii < psf_segids.end(); ++psii) { if ( (psii->size() == 0) || (psii->size() > 4) ) { cvm::error("Error: invalid PSF segment identifier provided, \""+ (*psii)+"\".\n", INPUT_ERROR); } } std::string range_conf = ""; size_t pos = 0; size_t range_count = 0; psii = psf_segids.begin(); while (key_lookup(group_conf, "atomNameResidueRange", range_conf, pos)) { range_count++; if (psf_segids.size() && (range_count > psf_segids.size())) { cvm::error("Error: more instances of \"atomNameResidueRange\" than " "values of \"psfSegID\".\n", INPUT_ERROR); } else { parse_error |= add_atom_name_residue_range(psf_segids.size() ? *psii : std::string(""), range_conf); if (psf_segids.size()) psii++; } range_conf = ""; } } { // read the atoms from a file std::string atoms_file_name; if (get_keyval(group_conf, "atomsFile", atoms_file_name, std::string(""))) { std::string atoms_col; if (!get_keyval(group_conf, "atomsCol", atoms_col, std::string(""))) { cvm::error("Error: parameter atomsCol is required if atomsFile is set.\n", INPUT_ERROR); } double atoms_col_value; bool const atoms_col_value_defined = get_keyval(group_conf, "atomsColValue", atoms_col_value, 0.0); if (atoms_col_value_defined && (!atoms_col_value)) { cvm::error("Error: atomsColValue, if provided, must be non-zero.\n", INPUT_ERROR); } cvm::load_atoms(atoms_file_name.c_str(), *this, atoms_col, atoms_col_value); } } // Catch any errors from all the initialization steps above if (parse_error || cvm::get_error()) return COLVARS_ERROR; if (b_scalable) { index = (cvm::proxy)->init_atom_group(atoms_ids); } // checks of doubly-counted atoms have been handled by add_atom() already if (get_keyval(group_conf, "dummyAtom", dummy_atom_pos, cvm::atom_pos())) { b_dummy = true; // note: atoms_ids.size() is used here in lieu of atoms.size(), // which can be empty for scalable groups if (atoms_ids.size()) { cvm::error("Error: cannot set up group \""+ key+"\" as a dummy atom " "and provide it with atom definitions.\n", INPUT_ERROR); } } else { b_dummy = false; if (!(atoms_ids.size())) { cvm::error("Error: no atoms defined for atom group \""+ key+"\".\n", INPUT_ERROR); } // whether these atoms will ever receive forces or not bool enable_forces = true; // disableForces is deprecated if (get_keyval(group_conf, "enableForces", enable_forces, true)) { noforce = !enable_forces; } else { get_keyval(group_conf, "disableForces", noforce, false, colvarparse::parse_silent); } } parse_error |= parse_fitting_options(group_conf); // TODO move this to colvarparse object check_keywords(group_conf, key.c_str()); if (cvm::get_error()) { cvm::error("Error setting up atom group \""+key+"\"."); return COLVARS_ERROR; } // Calculate all required properties (such as total mass) setup(); if (cvm::debug()) cvm::log("Done initializing atom group \""+key+"\".\n"); cvm::log("Atom group \""+key+"\" defined, "+ cvm::to_str(atoms_ids.size())+" atoms initialized: total mass = "+ cvm::to_str(total_mass)+", total charge = "+ cvm::to_str(total_charge)+".\n"); cvm::decrease_depth(); return (cvm::get_error() ? COLVARS_ERROR : COLVARS_OK); } int cvm::atom_group::add_atom_numbers(std::string const &numbers_conf) { std::vector atom_indexes; if (numbers_conf.size()) { std::istringstream is(numbers_conf); int ia; while (is >> ia) { atom_indexes.push_back(ia); } } if (atom_indexes.size()) { atoms_ids.reserve(atoms_ids.size()+atom_indexes.size()); if (b_scalable) { for (size_t i = 0; i < atom_indexes.size(); i++) { add_atom_id((cvm::proxy)->check_atom_id(atom_indexes[i])); } } else { // if we are handling the group on rank 0, better allocate the vector in one shot atoms.reserve(atoms.size()+atom_indexes.size()); for (size_t i = 0; i < atom_indexes.size(); i++) { add_atom(cvm::atom(atom_indexes[i])); } } if (cvm::get_error()) return COLVARS_ERROR; } else { cvm::error("Error: no numbers provided for \"" "atomNumbers\".\n", INPUT_ERROR); return COLVARS_ERROR; } return COLVARS_OK; } int cvm::atom_group::add_index_group(std::string const &index_group_name) { std::list::iterator names_i = cvm::index_group_names.begin(); std::list >::iterator index_groups_i = cvm::index_groups.begin(); for ( ; names_i != cvm::index_group_names.end() ; ++names_i, ++index_groups_i) { if (*names_i == index_group_name) break; } if (names_i == cvm::index_group_names.end()) { cvm::error("Error: could not find index group "+ index_group_name+" among those provided by the index file.\n", INPUT_ERROR); return COLVARS_ERROR; } atoms_ids.reserve(atoms_ids.size()+index_groups_i->size()); if (b_scalable) { for (size_t i = 0; i < index_groups_i->size(); i++) { add_atom_id((cvm::proxy)->check_atom_id((*index_groups_i)[i])); } } else { atoms.reserve(atoms.size()+index_groups_i->size()); for (size_t i = 0; i < index_groups_i->size(); i++) { add_atom(cvm::atom((*index_groups_i)[i])); } } if (cvm::get_error()) return COLVARS_ERROR; return COLVARS_OK; } int cvm::atom_group::add_atom_numbers_range(std::string const &range_conf) { if (range_conf.size()) { std::istringstream is(range_conf); int initial, final; char dash; if ( (is >> initial) && (initial > 0) && (is >> dash) && (dash == '-') && (is >> final) && (final > 0) ) { atoms_ids.reserve(atoms_ids.size() + (final - initial + 1)); if (b_scalable) { for (int anum = initial; anum <= final; anum++) { add_atom_id((cvm::proxy)->check_atom_id(anum)); } } else { atoms.reserve(atoms.size() + (final - initial + 1)); for (int anum = initial; anum <= final; anum++) { add_atom(cvm::atom(anum)); } } } if (cvm::get_error()) return COLVARS_ERROR; } else { cvm::error("Error: no valid definition for \"atomNumbersRange\", \""+ range_conf+"\".\n", INPUT_ERROR); return COLVARS_ERROR; } return COLVARS_OK; } int cvm::atom_group::add_atom_name_residue_range(std::string const &psf_segid, std::string const &range_conf) { if (range_conf.size()) { std::istringstream is(range_conf); std::string atom_name; int initial, final; char dash; if ( (is >> atom_name) && (atom_name.size()) && (is >> initial) && (initial > 0) && (is >> dash) && (dash == '-') && (is >> final) && (final > 0) ) { atoms_ids.reserve(atoms_ids.size() + (final - initial + 1)); if (b_scalable) { for (int resid = initial; resid <= final; resid++) { add_atom_id((cvm::proxy)->check_atom_id(resid, atom_name, psf_segid)); } } else { atoms.reserve(atoms.size() + (final - initial + 1)); for (int resid = initial; resid <= final; resid++) { add_atom(cvm::atom(resid, atom_name, psf_segid)); } } if (cvm::get_error()) return COLVARS_ERROR; } else { cvm::error("Error: cannot parse definition for \"" "atomNameResidueRange\", \""+ range_conf+"\".\n"); return COLVARS_ERROR; } } else { cvm::error("Error: atomNameResidueRange with empty definition.\n"); return COLVARS_ERROR; } return COLVARS_OK; } int cvm::atom_group::parse_fitting_options(std::string const &group_conf) { bool b_defined_center = get_keyval(group_conf, "centerReference", b_center, false); bool b_defined_rotate = get_keyval(group_conf, "rotateReference", b_rotate, false); // is the user setting explicit options? b_user_defined_fit = b_defined_center || b_defined_rotate; get_keyval(group_conf, "enableFitGradients", b_fit_gradients, true); if (b_center || b_rotate) { if (b_dummy) cvm::error("Error: centerReference or rotateReference " "cannot be defined for a dummy atom.\n"); if (key_lookup(group_conf, "refPositionsGroup")) { // instead of this group, define another group to compute the fit if (ref_pos_group) { cvm::error("Error: the atom group \""+ key+"\" has already a reference group " "for the rototranslational fit, which was communicated by the " "colvar component. You should not use refPositionsGroup " "in this case.\n"); } cvm::log("Within atom group \""+key+"\":\n"); ref_pos_group = new atom_group(group_conf, "refPositionsGroup"); // regardless of the configuration, fit gradients must be calculated by refPositionsGroup ref_pos_group->b_fit_gradients = this->b_fit_gradients; this->b_fit_gradients = false; } atom_group *group_for_fit = ref_pos_group ? ref_pos_group : this; get_keyval(group_conf, "refPositions", ref_pos, ref_pos); std::string ref_pos_file; if (get_keyval(group_conf, "refPositionsFile", ref_pos_file, std::string(""))) { if (ref_pos.size()) { cvm::error("Error: cannot specify \"refPositionsFile\" and " "\"refPositions\" at the same time.\n"); } std::string ref_pos_col; double ref_pos_col_value=0.0; if (get_keyval(group_conf, "refPositionsCol", ref_pos_col, std::string(""))) { // if provided, use PDB column to select coordinates bool found = get_keyval(group_conf, "refPositionsColValue", ref_pos_col_value, 0.0); if (found && ref_pos_col_value == 0.0) { cvm::error("Error: refPositionsColValue, " "if provided, must be non-zero.\n", INPUT_ERROR); return COLVARS_ERROR; } } else { // if not, rely on existing atom indices for the group group_for_fit->create_sorted_ids(); ref_pos.resize(group_for_fit->size()); } cvm::load_coords(ref_pos_file.c_str(), ref_pos, group_for_fit->sorted_ids, ref_pos_col, ref_pos_col_value); } if (ref_pos.size()) { if (b_rotate) { if (ref_pos.size() != group_for_fit->size()) cvm::error("Error: the number of reference positions provided("+ cvm::to_str(ref_pos.size())+ ") does not match the number of atoms within \""+ key+ "\" ("+cvm::to_str(group_for_fit->size())+ "): to perform a rotational fit, "+ "these numbers should be equal.\n", INPUT_ERROR); } // save the center of geometry of ref_pos and subtract it center_ref_pos(); } else { cvm::error("Error: no reference positions provided.\n", INPUT_ERROR); return COLVARS_ERROR; } if (b_fit_gradients) { group_for_fit->fit_gradients.assign(group_for_fit->size(), cvm::atom_pos(0.0, 0.0, 0.0)); rot.request_group1_gradients(group_for_fit->size()); } if (b_rotate && !noforce) { cvm::log("Warning: atom group \""+key+ "\" will be aligned to a fixed orientation given by the reference positions provided. " "If the internal structure of the group changes too much (i.e. its RMSD is comparable " "to its radius of gyration), the optimal rotation and its gradients may become discontinuous. " "If that happens, use refPositionsGroup (or a different definition for it if already defined) " "to align the coordinates.\n"); // initialize rot member data rot.request_group1_gradients(this->size()); } } return COLVARS_OK; } int cvm::atom_group::create_sorted_ids(void) { // Only do the work if the vector is not yet populated if (sorted_ids.size()) return COLVARS_OK; std::list temp_id_list; for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { temp_id_list.push_back(ai->id); } temp_id_list.sort(); temp_id_list.unique(); if (temp_id_list.size() != this->size()) { cvm::error("Error: duplicate atom IDs in atom group? (found " + cvm::to_str(temp_id_list.size()) + " unique atom IDs instead of" + cvm::to_str(this->size()) + ").\n"); return COLVARS_ERROR; } sorted_ids = std::vector (temp_id_list.size()); unsigned int id_i = 0; std::list::iterator li; for (li = temp_id_list.begin(); li != temp_id_list.end(); ++li) { sorted_ids[id_i] = *li; id_i++; } return (cvm::get_error() ? COLVARS_ERROR : COLVARS_OK); } void cvm::atom_group::center_ref_pos() { ref_pos_cog = cvm::atom_pos(0.0, 0.0, 0.0); std::vector::iterator pi; for (pi = ref_pos.begin(); pi != ref_pos.end(); ++pi) { ref_pos_cog += *pi; } ref_pos_cog /= (cvm::real) ref_pos.size(); for (pi = ref_pos.begin(); pi != ref_pos.end(); ++pi) { (*pi) -= ref_pos_cog; } } void cvm::atom_group::read_positions() { if (b_dummy) return; for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->read_position(); } if (ref_pos_group) ref_pos_group->read_positions(); } int cvm::atom_group::calc_required_properties() { if (b_dummy) return COLVARS_OK; // TODO check if the com is needed? calc_center_of_mass(); if (!b_scalable) { // TODO check if calc_center_of_geometry() is needed without a fit? calc_center_of_geometry(); if (b_center || b_rotate) { calc_apply_roto_translation(); } } // TODO calculate elements of scalable cvc's here before reduction return (cvm::get_error() ? COLVARS_ERROR : COLVARS_OK); } void cvm::atom_group::calc_apply_roto_translation() { atom_group *fit_group = ref_pos_group ? ref_pos_group : this; if (b_center) { // center on the origin first cvm::atom_pos const cog = fit_group->center_of_geometry(); apply_translation(-1.0 * cog); } if (b_rotate) { // rotate the group (around the center of geometry if b_center is // true, around the origin otherwise) rot.calc_optimal_rotation(fit_group->positions(), ref_pos); for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->pos = rot.rotate(ai->pos); } } if (b_center) { // align with the center of geometry of ref_pos apply_translation(ref_pos_cog); // update the center of geometry for external use cog = ref_pos_cog; } // recalculate the center of mass calc_center_of_mass(); } void cvm::atom_group::apply_translation(cvm::rvector const &t) { if (b_dummy) { cvm::error("Error: cannot translate the coordinates of a dummy atom group.\n", INPUT_ERROR); return; } if (b_scalable) { cvm::error("Error: cannot translate the coordinates of a scalable atom group.\n", INPUT_ERROR); return; } for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->pos += t; } } void cvm::atom_group::apply_rotation(cvm::rotation const &rot) { if (b_dummy) { cvm::error("Error: cannot rotate the coordinates of a dummy atom group.\n", INPUT_ERROR); return; } if (b_scalable) { cvm::error("Error: cannot rotate the coordinates of a scalable atom group.\n", INPUT_ERROR); return; } for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->pos = rot.rotate(ai->pos - center_of_geometry()) + center_of_geometry(); } } void cvm::atom_group::read_velocities() { if (b_dummy) return; if (b_rotate) { for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->read_velocity(); ai->vel = rot.rotate(ai->vel); } } else { for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->read_velocity(); } } } void cvm::atom_group::read_system_forces() { if (b_dummy) return; if (b_rotate) { for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->read_system_force(); ai->system_force = rot.rotate(ai->system_force); } } else { for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->read_system_force(); } } } int cvm::atom_group::calc_center_of_geometry() { if (b_dummy) { cog = dummy_atom_pos; } else { cog.reset(); for (cvm::atom_const_iter ai = this->begin(); ai != this->end(); ai++) { cog += ai->pos; } cog /= this->size(); } return COLVARS_OK; } int cvm::atom_group::calc_center_of_mass() { if (b_dummy) { com = dummy_atom_pos; } else if (b_scalable) { com = (cvm::proxy)->get_atom_group_com(index); } else { com.reset(); for (cvm::atom_const_iter ai = this->begin(); ai != this->end(); ai++) { com += ai->mass * ai->pos; } com /= total_mass; } return COLVARS_OK; } int cvm::atom_group::calc_dipole(cvm::atom_pos const &com) { if (b_dummy) { cvm::error("Error: trying to compute the dipole of an empty group.\n", INPUT_ERROR); return COLVARS_ERROR; } dip.reset(); for (cvm::atom_const_iter ai = this->begin(); ai != this->end(); ai++) { dip += ai->charge * (ai->pos - com); } return COLVARS_OK; } void cvm::atom_group::set_weighted_gradient(cvm::rvector const &grad) { if (b_dummy) return; if (b_scalable) { scalar_com_gradient = grad; return; } for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->grad = (ai->mass/total_mass) * grad; } } void cvm::atom_group::calc_fit_gradients() { if (b_dummy) return; if ((!b_center) && (!b_rotate)) return; // no fit if (cvm::debug()) cvm::log("Calculating fit gradients.\n"); atom_group *group_for_fit = ref_pos_group ? ref_pos_group : this; group_for_fit->fit_gradients.assign(group_for_fit->size(), cvm::rvector(0.0, 0.0, 0.0)); if (b_center) { // add the center of geometry contribution to the gradients for (size_t i = 0; i < this->size(); i++) { // need to bring the gradients in original frame first cvm::rvector const atom_grad = b_rotate ? (rot.inverse()).rotate(atoms[i].grad) : atoms[i].grad; for (size_t j = 0; j < group_for_fit->size(); j++) { group_for_fit->fit_gradients[j] += (-1.0)/(cvm::real(group_for_fit->size())) * atom_grad; } } } if (b_rotate) { // add the rotation matrix contribution to the gradients cvm::rotation const rot_inv = rot.inverse(); cvm::atom_pos const cog = center_of_geometry(); for (size_t i = 0; i < this->size(); i++) { cvm::atom_pos const pos_orig = rot_inv.rotate((b_center ? (atoms[i].pos - cog) : (atoms[i].pos))); for (size_t j = 0; j < group_for_fit->size(); j++) { // calculate \partial(R(q) \vec{x}_i)/\partial q) \cdot \partial\xi/\partial\vec{x}_i cvm::quaternion const dxdq = rot.q.position_derivative_inner(pos_orig, atoms[i].grad); // multiply by \cdot {\partial q}/\partial\vec{x}_j and add it to the fit gradients for (size_t iq = 0; iq < 4; iq++) { group_for_fit->fit_gradients[j] += dxdq[iq] * rot.dQ0_1[j][iq]; } } } } if (cvm::debug()) cvm::log("Done calculating fit gradients.\n"); } std::vector cvm::atom_group::positions() const { if (b_dummy) { cvm::error("Error: positions are not available " "from a dummy atom group.\n", INPUT_ERROR); } if (b_scalable) { cvm::error("Error: atomic positions are not available " "from a scalable atom group.\n", INPUT_ERROR); } std::vector x(this->size(), 0.0); cvm::atom_const_iter ai = this->begin(); std::vector::iterator xi = x.begin(); for ( ; ai != this->end(); ++xi, ++ai) { *xi = ai->pos; } return x; } std::vector cvm::atom_group::positions_shifted(cvm::rvector const &shift) const { if (b_dummy) { cvm::error("Error: positions are not available " "from a dummy atom group.\n", INPUT_ERROR); } if (b_scalable) { cvm::error("Error: atomic positions are not available " "from a scalable atom group.\n", INPUT_ERROR); } std::vector x(this->size(), 0.0); cvm::atom_const_iter ai = this->begin(); std::vector::iterator xi = x.begin(); for ( ; ai != this->end(); ++xi, ++ai) { *xi = (ai->pos + shift); } return x; } std::vector cvm::atom_group::velocities() const { if (b_dummy) { cvm::error("Error: velocities are not available " "from a dummy atom group.\n", INPUT_ERROR); } if (b_scalable) { cvm::error("Error: atomic velocities are not available " "from a scalable atom group.\n", INPUT_ERROR); } std::vector v(this->size(), 0.0); cvm::atom_const_iter ai = this->begin(); std::vector::iterator vi = v.begin(); for ( ; ai != this->end(); vi++, ai++) { *vi = ai->vel; } return v; } std::vector cvm::atom_group::system_forces() const { if (b_dummy) { cvm::error("Error: system forces are not available " "from a dummy atom group.\n", INPUT_ERROR); } if (b_scalable) { cvm::error("Error: atomic system forces are not available " "from a scalable atom group.\n", INPUT_ERROR); } std::vector f(this->size(), 0.0); cvm::atom_const_iter ai = this->begin(); std::vector::iterator fi = f.begin(); for ( ; ai != this->end(); ++fi, ++ai) { *fi = ai->system_force; } return f; } cvm::rvector cvm::atom_group::system_force() const { if (b_dummy) { cvm::error("Error: total system forces are not available " "from a dummy atom group.\n", INPUT_ERROR); } if (b_scalable) { return (cvm::proxy)->get_atom_group_system_force(index); } cvm::rvector f(0.0); for (cvm::atom_const_iter ai = this->begin(); ai != this->end(); ai++) { f += ai->system_force; } return f; } void cvm::atom_group::apply_colvar_force(cvm::real const &force) { if (cvm::debug()) { log("Communicating a colvar force from atom group to the MD engine.\n"); } if (b_dummy) return; if (noforce) { cvm::error("Error: sending a force to a group that has " "\"enableForces\" set to off.\n"); return; } if (b_scalable) { (cvm::proxy)->apply_atom_group_force(index, force * scalar_com_gradient); return; } if (b_rotate) { // rotate forces back to the original frame cvm::rotation const rot_inv = rot.inverse(); for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->apply_force(rot_inv.rotate(force * ai->grad)); } } else { for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->apply_force(force * ai->grad); } } if ((b_center || b_rotate) && b_fit_gradients) { atom_group *group_for_fit = ref_pos_group ? ref_pos_group : this; // add the contribution from the roto-translational fit to the gradients if (b_rotate) { // rotate forces back to the original frame cvm::rotation const rot_inv = rot.inverse(); for (size_t j = 0; j < group_for_fit->size(); j++) { (*group_for_fit)[j].apply_force(rot_inv.rotate(force * group_for_fit->fit_gradients[j])); } } else { for (size_t j = 0; j < group_for_fit->size(); j++) { (*group_for_fit)[j].apply_force(force * group_for_fit->fit_gradients[j]); } } } } void cvm::atom_group::apply_force(cvm::rvector const &force) { if (b_dummy) return; if (noforce) { cvm::error("Error: sending a force to a group that has " "\"disableForces\" defined.\n"); return; } if (b_scalable) { (cvm::proxy)->apply_atom_group_force(index, force); } if (b_rotate) { cvm::rotation const rot_inv = rot.inverse(); for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->apply_force(rot_inv.rotate((ai->mass/total_mass) * force)); } } else { for (cvm::atom_iter ai = this->begin(); ai != this->end(); ai++) { ai->apply_force((ai->mass/total_mass) * force); } } } void cvm::atom_group::apply_forces(std::vector const &forces) { if (b_dummy) return; if (noforce) cvm::error("Error: sending a force to a group that has " "\"disableForces\" defined.\n"); if (forces.size() != this->size()) { cvm::error("Error: trying to apply an array of forces to an atom " "group which does not have the same length.\n"); } if (b_rotate) { cvm::rotation const rot_inv = rot.inverse(); cvm::atom_iter ai = this->begin(); std::vector::const_iterator fi = forces.begin(); for ( ; ai != this->end(); ++fi, ++ai) { ai->apply_force(rot_inv.rotate(*fi)); } } else { cvm::atom_iter ai = this->begin(); std::vector::const_iterator fi = forces.begin(); for ( ; ai != this->end(); ++fi, ++ai) { ai->apply_force(*fi); } } }