/* fortran/dgecon.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; /* > \brief \b DGECON */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DGECON + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK, */ /* INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER NORM */ /* INTEGER INFO, LDA, N */ /* DOUBLE PRECISION ANORM, RCOND */ /* .. */ /* .. Array Arguments .. */ /* INTEGER IWORK( * ) */ /* DOUBLE PRECISION A( LDA, * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGECON estimates the reciprocal of the condition number of a general */ /* > real matrix A, in either the 1-norm or the infinity-norm, using */ /* > the LU factorization computed by DGETRF. */ /* > */ /* > An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* > condition number is computed as */ /* > RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] NORM */ /* > \verbatim */ /* > NORM is CHARACTER*1 */ /* > Specifies whether the 1-norm condition number or the */ /* > infinity-norm condition number is required: */ /* > = '1' or 'O': 1-norm; */ /* > = 'I': Infinity-norm. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > The factors L and U from the factorization A = P*L*U */ /* > as computed by DGETRF. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in] ANORM */ /* > \verbatim */ /* > ANORM is DOUBLE PRECISION */ /* > If NORM = '1' or 'O', the 1-norm of the original matrix A. */ /* > If NORM = 'I', the infinity-norm of the original matrix A. */ /* > \endverbatim */ /* > */ /* > \param[out] RCOND */ /* > \verbatim */ /* > RCOND is DOUBLE PRECISION */ /* > The reciprocal of the condition number of the matrix A, */ /* > computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (4*N) */ /* > \endverbatim */ /* > */ /* > \param[out] IWORK */ /* > \verbatim */ /* > IWORK is INTEGER array, dimension (N) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleGEcomputational */ /* ===================================================================== */ /* Subroutine */ int dgecon_(char *norm, integer *n, doublereal *a, integer * lda, doublereal *anorm, doublereal *rcond, doublereal *work, integer * iwork, integer *info, ftnlen norm_len) { /* System generated locals */ integer a_dim1, a_offset, i__1; doublereal d__1; /* Local variables */ doublereal sl; integer ix; doublereal su; integer kase, kase1; doublereal scale; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer isave[3]; extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *), dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *, ftnlen); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); doublereal ainvnm; extern /* Subroutine */ int dlatrs_(char *, char *, char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); logical onenrm; char normin[1]; doublereal smlnum; /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; --iwork; /* Function Body */ *info = 0; onenrm = *(unsigned char *)norm == '1' || lsame_(norm, (char *)"O", (ftnlen)1, ( ftnlen)1); if (! onenrm && ! lsame_(norm, (char *)"I", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*anorm < 0.) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DGECON", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } smlnum = dlamch_((char *)"Safe minimum", (ftnlen)12); /* Estimate the norm of inv(A). */ ainvnm = 0.; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(L). */ dlatrs_((char *)"Lower", (char *)"No transpose", (char *)"Unit", normin, n, &a[a_offset], lda, &work[1], &sl, &work[(*n << 1) + 1], info, (ftnlen)5, (ftnlen)12, (ftnlen)4, (ftnlen)1); /* Multiply by inv(U). */ dlatrs_((char *)"Upper", (char *)"No transpose", (char *)"Non-unit", normin, n, &a[ a_offset], lda, &work[1], &su, &work[*n * 3 + 1], info, ( ftnlen)5, (ftnlen)12, (ftnlen)8, (ftnlen)1); } else { /* Multiply by inv(U**T). */ dlatrs_((char *)"Upper", (char *)"Transpose", (char *)"Non-unit", normin, n, &a[a_offset], lda, &work[1], &su, &work[*n * 3 + 1], info, (ftnlen)5, ( ftnlen)9, (ftnlen)8, (ftnlen)1); /* Multiply by inv(L**T). */ dlatrs_((char *)"Lower", (char *)"Transpose", (char *)"Unit", normin, n, &a[a_offset], lda, &work[1], &sl, &work[(*n << 1) + 1], info, (ftnlen)5, (ftnlen)9, (ftnlen)4, (ftnlen)1); } /* Divide X by 1/(SL*SU) if doing so will not cause overflow. */ scale = sl * su; *(unsigned char *)normin = 'Y'; if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } L20: return 0; /* End of DGECON */ } /* dgecon_ */ #ifdef __cplusplus } #endif