/* fortran/dgemv.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DGEMV */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) */ /* .. Scalar Arguments .. */ /* DOUBLE PRECISION ALPHA,BETA */ /* INTEGER INCX,INCY,LDA,M,N */ /* CHARACTER TRANS */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A(LDA,*),X(*),Y(*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGEMV performs one of the matrix-vector operations */ /* > */ /* > y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, */ /* > */ /* > where alpha and beta are scalars, x and y are vectors and A is an */ /* > m by n matrix. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > On entry, TRANS specifies the operation to be performed as */ /* > follows: */ /* > */ /* > TRANS = 'N' or 'n' y := alpha*A*x + beta*y. */ /* > */ /* > TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. */ /* > */ /* > TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > On entry, M specifies the number of rows of the matrix A. */ /* > M must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the number of columns of the matrix A. */ /* > N must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is DOUBLE PRECISION. */ /* > On entry, ALPHA specifies the scalar alpha. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension ( LDA, N ) */ /* > Before entry, the leading m by n part of the array A must */ /* > contain the matrix of coefficients. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > On entry, LDA specifies the first dimension of A as declared */ /* > in the calling (sub) program. LDA must be at least */ /* > max( 1, m ). */ /* > \endverbatim */ /* > */ /* > \param[in] X */ /* > \verbatim */ /* > X is DOUBLE PRECISION array, dimension at least */ /* > ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */ /* > and at least */ /* > ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */ /* > Before entry, the incremented array X must contain the */ /* > vector x. */ /* > \endverbatim */ /* > */ /* > \param[in] INCX */ /* > \verbatim */ /* > INCX is INTEGER */ /* > On entry, INCX specifies the increment for the elements of */ /* > X. INCX must not be zero. */ /* > \endverbatim */ /* > */ /* > \param[in] BETA */ /* > \verbatim */ /* > BETA is DOUBLE PRECISION. */ /* > On entry, BETA specifies the scalar beta. When BETA is */ /* > supplied as zero then Y need not be set on input. */ /* > \endverbatim */ /* > */ /* > \param[in,out] Y */ /* > \verbatim */ /* > Y is DOUBLE PRECISION array, dimension at least */ /* > ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */ /* > and at least */ /* > ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */ /* > Before entry with BETA non-zero, the incremented array Y */ /* > must contain the vector y. On exit, Y is overwritten by the */ /* > updated vector y. */ /* > \endverbatim */ /* > */ /* > \param[in] INCY */ /* > \verbatim */ /* > INCY is INTEGER */ /* > On entry, INCY specifies the increment for the elements of */ /* > Y. INCY must not be zero. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup double_blas_level2 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Level 2 Blas routine. */ /* > The vector and matrix arguments are not referenced when N = 0, or M = 0 */ /* > */ /* > -- Written on 22-October-1986. */ /* > Jack Dongarra, Argonne National Lab. */ /* > Jeremy Du Croz, Nag Central Office. */ /* > Sven Hammarling, Nag Central Office. */ /* > Richard Hanson, Sandia National Labs. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dgemv_(char *trans, integer *m, integer *n, doublereal * alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, doublereal *beta, doublereal *y, integer *incy, ftnlen trans_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, j, ix, iy, jx, jy, kx, ky, info; doublereal temp; integer lenx, leny; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- Reference BLAS level2 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; --y; /* Function Body */ info = 0; if (! lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, (char *)"T", ( ftnlen)1, (ftnlen)1) && ! lsame_(trans, (char *)"C", (ftnlen)1, (ftnlen)1) ) { info = 1; } else if (*m < 0) { info = 2; } else if (*n < 0) { info = 3; } else if (*lda < max(1,*m)) { info = 6; } else if (*incx == 0) { info = 8; } else if (*incy == 0) { info = 11; } if (info != 0) { xerbla_((char *)"DGEMV ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) { return 0; } /* Set LENX and LENY, the lengths of the vectors x and y, and set */ /* up the start points in X and Y. */ if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) { lenx = *n; leny = *m; } else { lenx = *m; leny = *n; } if (*incx > 0) { kx = 1; } else { kx = 1 - (lenx - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (leny - 1) * *incy; } /* Start the operations. In this version the elements of A are */ /* accessed sequentially with one pass through A. */ /* First form y := beta*y. */ if (*beta != 1.) { if (*incy == 1) { if (*beta == 0.) { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { y[i__] = 0.; /* L10: */ } } else { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { y[i__] = *beta * y[i__]; /* L20: */ } } } else { iy = ky; if (*beta == 0.) { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { y[iy] = 0.; iy += *incy; /* L30: */ } } else { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { y[iy] = *beta * y[iy]; iy += *incy; /* L40: */ } } } } if (*alpha == 0.) { return 0; } if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) { /* Form y := alpha*A*x + y. */ jx = kx; if (*incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = *alpha * x[jx]; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { y[i__] += temp * a[i__ + j * a_dim1]; /* L50: */ } jx += *incx; /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = *alpha * x[jx]; iy = ky; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { y[iy] += temp * a[i__ + j * a_dim1]; iy += *incy; /* L70: */ } jx += *incx; /* L80: */ } } } else { /* Form y := alpha*A**T*x + y. */ jy = ky; if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = 0.; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp += a[i__ + j * a_dim1] * x[i__]; /* L90: */ } y[jy] += *alpha * temp; jy += *incy; /* L100: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = 0.; ix = kx; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp += a[i__ + j * a_dim1] * x[ix]; ix += *incx; /* L110: */ } y[jy] += *alpha * temp; jy += *incy; /* L120: */ } } } return 0; /* End of DGEMV */ } /* dgemv_ */ #ifdef __cplusplus } #endif