/* fortran/dgesv.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief DGESV computes the solution to system of linear equations A * X = B for GE matrices */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DGESV + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, LDA, LDB, N, NRHS */ /* .. */ /* .. Array Arguments .. */ /* INTEGER IPIV( * ) */ /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGESV computes the solution to a real system of linear equations */ /* > A * X = B, */ /* > where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */ /* > */ /* > The LU decomposition with partial pivoting and row interchanges is */ /* > used to factor A as */ /* > A = P * L * U, */ /* > where P is a permutation matrix, L is unit lower triangular, and U is */ /* > upper triangular. The factored form of A is then used to solve the */ /* > system of equations A * X = B. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of linear equations, i.e., the order of the */ /* > matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] NRHS */ /* > \verbatim */ /* > NRHS is INTEGER */ /* > The number of right hand sides, i.e., the number of columns */ /* > of the matrix B. NRHS >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the N-by-N coefficient matrix A. */ /* > On exit, the factors L and U from the factorization */ /* > A = P*L*U; the unit diagonal elements of L are not stored. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] IPIV */ /* > \verbatim */ /* > IPIV is INTEGER array, dimension (N) */ /* > The pivot indices that define the permutation matrix P; */ /* > row i of the matrix was interchanged with row IPIV(i). */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* > On entry, the N-by-NRHS matrix of right hand side matrix B. */ /* > On exit, if INFO = 0, the N-by-NRHS solution matrix X. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of the array B. LDB >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ /* > has been completed, but the factor U is exactly */ /* > singular, so the solution could not be computed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleGEsolve */ /* ===================================================================== */ /* Subroutine */ int dgesv_(integer *n, integer *nrhs, doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *ldb, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *, integer *, integer *, integer *), xerbla_(char *, integer *, ftnlen), dgetrs_(char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, ftnlen); /* -- LAPACK driver routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*nrhs < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DGESV ", &i__1, (ftnlen)6); return 0; } /* Compute the LU factorization of A. */ dgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info); if (*info == 0) { /* Solve the system A*X = B, overwriting B with X. */ dgetrs_((char *)"No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[ b_offset], ldb, info, (ftnlen)12); } return 0; /* End of DGESV */ } /* dgesv_ */ #ifdef __cplusplus } #endif