/* static/dgetrf2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b13 = 1.; static doublereal c_b16 = -1.; /* > \brief \b DGETRF2 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* RECURSIVE SUBROUTINE DGETRF2( M, N, A, LDA, IPIV, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, LDA, M, N */ /* .. */ /* .. Array Arguments .. */ /* INTEGER IPIV( * ) */ /* DOUBLE PRECISION A( LDA, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGETRF2 computes an LU factorization of a general M-by-N matrix A */ /* > using partial pivoting with row interchanges. */ /* > */ /* > The factorization has the form */ /* > A = P * L * U */ /* > where P is a permutation matrix, L is lower triangular with unit */ /* > diagonal elements (lower trapezoidal if m > n), and U is upper */ /* > triangular (upper trapezoidal if m < n). */ /* > */ /* > This is the recursive version of the algorithm. It divides */ /* > the matrix into four submatrices: */ /* > */ /* > [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2 */ /* > A = [ -----|----- ] with n1 = min(m,n)/2 */ /* > [ A21 | A22 ] n2 = n-n1 */ /* > */ /* > [ A11 ] */ /* > The subroutine calls itself to factor [ --- ], */ /* > [ A12 ] */ /* > [ A12 ] */ /* > do the swaps on [ --- ], solve A12, update A22, */ /* > [ A22 ] */ /* > */ /* > then calls itself to factor A22 and do the swaps on A21. */ /* > */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the M-by-N matrix to be factored. */ /* > On exit, the factors L and U from the factorization */ /* > A = P*L*U; the unit diagonal elements of L are not stored. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] IPIV */ /* > \verbatim */ /* > IPIV is INTEGER array, dimension (min(M,N)) */ /* > The pivot indices; for 1 <= i <= min(M,N), row i of the */ /* > matrix was interchanged with row IPIV(i). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ /* > has been completed, but the factor U is exactly */ /* > singular, and division by zero will occur if it is used */ /* > to solve a system of equations. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleGEcomputational */ /* ===================================================================== */ /* Subroutine */ int dgetrf2_(integer *m, integer *n, doublereal *a, integer * lda, integer *ipiv, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal d__1; /* Local variables */ integer i__, n1, n2; doublereal temp; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dgemm_(char *, char *, integer *, integer *, integer * , doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen); integer iinfo; doublereal sfmin; extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); extern doublereal dlamch_(char *, ftnlen); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dlaswp_( integer *, doublereal *, integer *, integer *, integer *, integer *, integer *); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DGETRF2", &i__1, (ftnlen)7); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } if (*m == 1) { /* Use unblocked code for one row case */ /* Just need to handle IPIV and INFO */ ipiv[1] = 1; if (a[a_dim1 + 1] == 0.) { *info = 1; } } else if (*n == 1) { /* Use unblocked code for one column case */ /* Compute machine safe minimum */ sfmin = dlamch_((char *)"S", (ftnlen)1); /* Find pivot and test for singularity */ i__ = idamax_(m, &a[a_dim1 + 1], &c__1); ipiv[1] = i__; if (a[i__ + a_dim1] != 0.) { /* Apply the interchange */ if (i__ != 1) { temp = a[a_dim1 + 1]; a[a_dim1 + 1] = a[i__ + a_dim1]; a[i__ + a_dim1] = temp; } /* Compute elements 2:M of the column */ if ((d__1 = a[a_dim1 + 1], abs(d__1)) >= sfmin) { i__1 = *m - 1; d__1 = 1. / a[a_dim1 + 1]; dscal_(&i__1, &d__1, &a[a_dim1 + 2], &c__1); } else { i__1 = *m - 1; for (i__ = 1; i__ <= i__1; ++i__) { a[i__ + 1 + a_dim1] /= a[a_dim1 + 1]; /* L10: */ } } } else { *info = 1; } } else { /* Use recursive code */ n1 = min(*m,*n) / 2; n2 = *n - n1; /* [ A11 ] */ /* Factor [ --- ] */ /* [ A21 ] */ dgetrf2_(m, &n1, &a[a_offset], lda, &ipiv[1], &iinfo); if (*info == 0 && iinfo > 0) { *info = iinfo; } /* [ A12 ] */ /* Apply interchanges to [ --- ] */ /* [ A22 ] */ dlaswp_(&n2, &a[(n1 + 1) * a_dim1 + 1], lda, &c__1, &n1, &ipiv[1], & c__1); /* Solve A12 */ dtrsm_((char *)"L", (char *)"L", (char *)"N", (char *)"U", &n1, &n2, &c_b13, &a[a_offset], lda, &a[( n1 + 1) * a_dim1 + 1], lda, (ftnlen)1, (ftnlen)1, (ftnlen)1, ( ftnlen)1); /* Update A22 */ i__1 = *m - n1; dgemm_((char *)"N", (char *)"N", &i__1, &n2, &n1, &c_b16, &a[n1 + 1 + a_dim1], lda, & a[(n1 + 1) * a_dim1 + 1], lda, &c_b13, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, (ftnlen)1, (ftnlen)1); /* Factor A22 */ i__1 = *m - n1; dgetrf2_(&i__1, &n2, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, &ipiv[n1 + 1], &iinfo); /* Adjust INFO and the pivot indices */ if (*info == 0 && iinfo > 0) { *info = iinfo + n1; } i__1 = min(*m,*n); for (i__ = n1 + 1; i__ <= i__1; ++i__) { ipiv[i__] += n1; /* L20: */ } /* Apply interchanges to A21 */ i__1 = n1 + 1; i__2 = min(*m,*n); dlaswp_(&n1, &a[a_dim1 + 1], lda, &i__1, &i__2, &ipiv[1], &c__1); } return 0; /* End of DGETRF2 */ } /* dgetrf2_ */ #ifdef __cplusplus } #endif