/* fortran/dlaed2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublereal c_b3 = -1.; static integer c__1 = 1; /* > \brief \b DLAED2 used by DSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLAED2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W, */ /* Q2, INDX, INDXC, INDXP, COLTYP, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, K, LDQ, N, N1 */ /* DOUBLE PRECISION RHO */ /* .. */ /* .. Array Arguments .. */ /* INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ), */ /* $ INDXQ( * ) */ /* DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), */ /* $ W( * ), Z( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLAED2 merges the two sets of eigenvalues together into a single */ /* > sorted set. Then it tries to deflate the size of the problem. */ /* > There are two ways in which deflation can occur: when two or more */ /* > eigenvalues are close together or if there is a tiny entry in the */ /* > Z vector. For each such occurrence the order of the related secular */ /* > equation problem is reduced by one. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[out] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The number of non-deflated eigenvalues, and the order of the */ /* > related secular equation. 0 <= K <=N. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N1 */ /* > \verbatim */ /* > N1 is INTEGER */ /* > The location of the last eigenvalue in the leading sub-matrix. */ /* > min(1,N) <= N1 <= N/2. */ /* > \endverbatim */ /* > */ /* > \param[in,out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension (N) */ /* > On entry, D contains the eigenvalues of the two submatrices to */ /* > be combined. */ /* > On exit, D contains the trailing (N-K) updated eigenvalues */ /* > (those which were deflated) sorted into increasing order. */ /* > \endverbatim */ /* > */ /* > \param[in,out] Q */ /* > \verbatim */ /* > Q is DOUBLE PRECISION array, dimension (LDQ, N) */ /* > On entry, Q contains the eigenvectors of two submatrices in */ /* > the two square blocks with corners at (1,1), (N1,N1) */ /* > and (N1+1, N1+1), (N,N). */ /* > On exit, Q contains the trailing (N-K) updated eigenvectors */ /* > (those which were deflated) in its last N-K columns. */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ */ /* > \verbatim */ /* > LDQ is INTEGER */ /* > The leading dimension of the array Q. LDQ >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in,out] INDXQ */ /* > \verbatim */ /* > INDXQ is INTEGER array, dimension (N) */ /* > The permutation which separately sorts the two sub-problems */ /* > in D into ascending order. Note that elements in the second */ /* > half of this permutation must first have N1 added to their */ /* > values. Destroyed on exit. */ /* > \endverbatim */ /* > */ /* > \param[in,out] RHO */ /* > \verbatim */ /* > RHO is DOUBLE PRECISION */ /* > On entry, the off-diagonal element associated with the rank-1 */ /* > cut which originally split the two submatrices which are now */ /* > being recombined. */ /* > On exit, RHO has been modified to the value required by */ /* > DLAED3. */ /* > \endverbatim */ /* > */ /* > \param[in] Z */ /* > \verbatim */ /* > Z is DOUBLE PRECISION array, dimension (N) */ /* > On entry, Z contains the updating vector (the last */ /* > row of the first sub-eigenvector matrix and the first row of */ /* > the second sub-eigenvector matrix). */ /* > On exit, the contents of Z have been destroyed by the updating */ /* > process. */ /* > \endverbatim */ /* > */ /* > \param[out] DLAMDA */ /* > \verbatim */ /* > DLAMDA is DOUBLE PRECISION array, dimension (N) */ /* > A copy of the first K eigenvalues which will be used by */ /* > DLAED3 to form the secular equation. */ /* > \endverbatim */ /* > */ /* > \param[out] W */ /* > \verbatim */ /* > W is DOUBLE PRECISION array, dimension (N) */ /* > The first k values of the final deflation-altered z-vector */ /* > which will be passed to DLAED3. */ /* > \endverbatim */ /* > */ /* > \param[out] Q2 */ /* > \verbatim */ /* > Q2 is DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2) */ /* > A copy of the first K eigenvectors which will be used by */ /* > DLAED3 in a matrix multiply (DGEMM) to solve for the new */ /* > eigenvectors. */ /* > \endverbatim */ /* > */ /* > \param[out] INDX */ /* > \verbatim */ /* > INDX is INTEGER array, dimension (N) */ /* > The permutation used to sort the contents of DLAMDA into */ /* > ascending order. */ /* > \endverbatim */ /* > */ /* > \param[out] INDXC */ /* > \verbatim */ /* > INDXC is INTEGER array, dimension (N) */ /* > The permutation used to arrange the columns of the deflated */ /* > Q matrix into three groups: the first group contains non-zero */ /* > elements only at and above N1, the second contains */ /* > non-zero elements only below N1, and the third is dense. */ /* > \endverbatim */ /* > */ /* > \param[out] INDXP */ /* > \verbatim */ /* > INDXP is INTEGER array, dimension (N) */ /* > The permutation used to place deflated values of D at the end */ /* > of the array. INDXP(1:K) points to the nondeflated D-values */ /* > and INDXP(K+1:N) points to the deflated eigenvalues. */ /* > \endverbatim */ /* > */ /* > \param[out] COLTYP */ /* > \verbatim */ /* > COLTYP is INTEGER array, dimension (N) */ /* > During execution, a label which will indicate which of the */ /* > following types a column in the Q2 matrix is: */ /* > 1 : non-zero in the upper half only; */ /* > 2 : dense; */ /* > 3 : non-zero in the lower half only; */ /* > 4 : deflated. */ /* > On exit, COLTYP(i) is the number of columns of type i, */ /* > for i=1 to 4 only. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup auxOTHERcomputational */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Jeff Rutter, Computer Science Division, University of California */ /* > at Berkeley, USA \n */ /* > Modified by Francoise Tisseur, University of Tennessee */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlaed2_(integer *k, integer *n, integer *n1, doublereal * d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho, doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2, integer *indx, integer *indxc, integer *indxp, integer *coltyp, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; doublereal d__1, d__2, d__3, d__4; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal c__; integer i__, j; doublereal s, t; integer k2, n2, ct, nj, pj, js, iq1, iq2, n1p1; doublereal eps, tau, tol; integer psm[4], imax, jmax; extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer ctot[4]; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *, ftnlen); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, integer *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, ftnlen), xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --indxq; --z__; --dlamda; --w; --q2; --indx; --indxc; --indxp; --coltyp; /* Function Body */ *info = 0; if (*n < 0) { *info = -2; } else if (*ldq < max(1,*n)) { *info = -6; } else /* if(complicated condition) */ { /* Computing MIN */ i__1 = 1, i__2 = *n / 2; if (min(i__1,i__2) > *n1 || *n / 2 < *n1) { *info = -3; } } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DLAED2", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } n2 = *n - *n1; n1p1 = *n1 + 1; if (*rho < 0.) { dscal_(&n2, &c_b3, &z__[n1p1], &c__1); } /* Normalize z so that norm(z) = 1. Since z is the concatenation of */ /* two normalized vectors, norm2(z) = sqrt(2). */ t = 1. / sqrt(2.); dscal_(n, &t, &z__[1], &c__1); /* RHO = ABS( norm(z)**2 * RHO ) */ *rho = (d__1 = *rho * 2., abs(d__1)); /* Sort the eigenvalues into increasing order */ i__1 = *n; for (i__ = n1p1; i__ <= i__1; ++i__) { indxq[i__] += *n1; /* L10: */ } /* re-integrate the deflated parts from the last pass */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { dlamda[i__] = d__[indxq[i__]]; /* L20: */ } dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indx[i__] = indxq[indxc[i__]]; /* L30: */ } /* Calculate the allowable deflation tolerance */ imax = idamax_(n, &z__[1], &c__1); jmax = idamax_(n, &d__[1], &c__1); eps = dlamch_((char *)"Epsilon", (ftnlen)7); /* Computing MAX */ d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2)) ; tol = eps * 8. * max(d__3,d__4); /* If the rank-1 modifier is small enough, no more needs to be done */ /* except to reorganize Q so that its columns correspond with the */ /* elements in D. */ if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) { *k = 0; iq2 = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__ = indx[j]; dcopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1); dlamda[j] = d__[i__]; iq2 += *n; /* L40: */ } dlacpy_((char *)"A", n, n, &q2[1], n, &q[q_offset], ldq, (ftnlen)1); dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1); goto L190; } /* If there are multiple eigenvalues then the problem deflates. Here */ /* the number of equal eigenvalues are found. As each equal */ /* eigenvalue is found, an elementary reflector is computed to rotate */ /* the corresponding eigensubspace so that the corresponding */ /* components of Z are zero in this new basis. */ i__1 = *n1; for (i__ = 1; i__ <= i__1; ++i__) { coltyp[i__] = 1; /* L50: */ } i__1 = *n; for (i__ = n1p1; i__ <= i__1; ++i__) { coltyp[i__] = 3; /* L60: */ } *k = 0; k2 = *n + 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { nj = indx[j]; if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) { /* Deflate due to small z component. */ --k2; coltyp[nj] = 4; indxp[k2] = nj; if (j == *n) { goto L100; } } else { pj = nj; goto L80; } /* L70: */ } L80: ++j; nj = indx[j]; if (j > *n) { goto L100; } if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) { /* Deflate due to small z component. */ --k2; coltyp[nj] = 4; indxp[k2] = nj; } else { /* Check if eigenvalues are close enough to allow deflation. */ s = z__[pj]; c__ = z__[nj]; /* Find sqrt(a**2+b**2) without overflow or */ /* destructive underflow. */ tau = dlapy2_(&c__, &s); t = d__[nj] - d__[pj]; c__ /= tau; s = -s / tau; if ((d__1 = t * c__ * s, abs(d__1)) <= tol) { /* Deflation is possible. */ z__[nj] = tau; z__[pj] = 0.; if (coltyp[nj] != coltyp[pj]) { coltyp[nj] = 2; } coltyp[pj] = 4; drot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, & c__, &s); /* Computing 2nd power */ d__1 = c__; /* Computing 2nd power */ d__2 = s; t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2); /* Computing 2nd power */ d__1 = s; /* Computing 2nd power */ d__2 = c__; d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2); d__[pj] = t; --k2; i__ = 1; L90: if (k2 + i__ <= *n) { if (d__[pj] < d__[indxp[k2 + i__]]) { indxp[k2 + i__ - 1] = indxp[k2 + i__]; indxp[k2 + i__] = pj; ++i__; goto L90; } else { indxp[k2 + i__ - 1] = pj; } } else { indxp[k2 + i__ - 1] = pj; } pj = nj; } else { ++(*k); dlamda[*k] = d__[pj]; w[*k] = z__[pj]; indxp[*k] = pj; pj = nj; } } goto L80; L100: /* Record the last eigenvalue. */ ++(*k); dlamda[*k] = d__[pj]; w[*k] = z__[pj]; indxp[*k] = pj; /* Count up the total number of the various types of columns, then */ /* form a permutation which positions the four column types into */ /* four uniform groups (although one or more of these groups may be */ /* empty). */ for (j = 1; j <= 4; ++j) { ctot[j - 1] = 0; /* L110: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { ct = coltyp[j]; ++ctot[ct - 1]; /* L120: */ } /* PSM(*) = Position in SubMatrix (of types 1 through 4) */ psm[0] = 1; psm[1] = ctot[0] + 1; psm[2] = psm[1] + ctot[1]; psm[3] = psm[2] + ctot[2]; *k = *n - ctot[3]; /* Fill out the INDXC array so that the permutation which it induces */ /* will place all type-1 columns first, all type-2 columns next, */ /* then all type-3's, and finally all type-4's. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { js = indxp[j]; ct = coltyp[js]; indx[psm[ct - 1]] = js; indxc[psm[ct - 1]] = j; ++psm[ct - 1]; /* L130: */ } /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */ /* and Q2 respectively. The eigenvalues/vectors which were not */ /* deflated go into the first K slots of DLAMDA and Q2 respectively, */ /* while those which were deflated go into the last N - K slots. */ i__ = 1; iq1 = 1; iq2 = (ctot[0] + ctot[1]) * *n1 + 1; i__1 = ctot[0]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1); z__[i__] = d__[js]; ++i__; iq1 += *n1; /* L140: */ } i__1 = ctot[1]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1); dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1); z__[i__] = d__[js]; ++i__; iq1 += *n1; iq2 += n2; /* L150: */ } i__1 = ctot[2]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1); z__[i__] = d__[js]; ++i__; iq2 += n2; /* L160: */ } iq1 = iq2; i__1 = ctot[3]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; dcopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1); iq2 += *n; z__[i__] = d__[js]; ++i__; /* L170: */ } /* The deflated eigenvalues and their corresponding vectors go back */ /* into the last N - K slots of D and Q respectively. */ if (*k < *n) { dlacpy_((char *)"A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq, (ftnlen)1); i__1 = *n - *k; dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1); } /* Copy CTOT into COLTYP for referencing in DLAED3. */ for (j = 1; j <= 4; ++j) { coltyp[j] = ctot[j - 1]; /* L180: */ } L190: return 0; /* End of DLAED2 */ } /* dlaed2_ */ #ifdef __cplusplus } #endif