/* fortran/dlaev2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLAEV2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 ) */ /* .. Scalar Arguments .. */ /* DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1 */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix */ /* > [ A B ] */ /* > [ B C ]. */ /* > On return, RT1 is the eigenvalue of larger absolute value, RT2 is the */ /* > eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right */ /* > eigenvector for RT1, giving the decomposition */ /* > */ /* > [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ] */ /* > [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION */ /* > The (1,1) element of the 2-by-2 matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] B */ /* > \verbatim */ /* > B is DOUBLE PRECISION */ /* > The (1,2) element and the conjugate of the (2,1) element of */ /* > the 2-by-2 matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] C */ /* > \verbatim */ /* > C is DOUBLE PRECISION */ /* > The (2,2) element of the 2-by-2 matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] RT1 */ /* > \verbatim */ /* > RT1 is DOUBLE PRECISION */ /* > The eigenvalue of larger absolute value. */ /* > \endverbatim */ /* > */ /* > \param[out] RT2 */ /* > \verbatim */ /* > RT2 is DOUBLE PRECISION */ /* > The eigenvalue of smaller absolute value. */ /* > \endverbatim */ /* > */ /* > \param[out] CS1 */ /* > \verbatim */ /* > CS1 is DOUBLE PRECISION */ /* > \endverbatim */ /* > */ /* > \param[out] SN1 */ /* > \verbatim */ /* > SN1 is DOUBLE PRECISION */ /* > The vector (CS1, SN1) is a unit right eigenvector for RT1. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup OTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > RT1 is accurate to a few ulps barring over/underflow. */ /* > */ /* > RT2 may be inaccurate if there is massive cancellation in the */ /* > determinant A*C-B*B; higher precision or correctly rounded or */ /* > correctly truncated arithmetic would be needed to compute RT2 */ /* > accurately in all cases. */ /* > */ /* > CS1 and SN1 are accurate to a few ulps barring over/underflow. */ /* > */ /* > Overflow is possible only if RT1 is within a factor of 5 of overflow. */ /* > Underflow is harmless if the input data is 0 or exceeds */ /* > underflow_threshold / macheps. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlaev2_(doublereal *a, doublereal *b, doublereal *c__, doublereal *rt1, doublereal *rt2, doublereal *cs1, doublereal *sn1) { /* System generated locals */ doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal ab, df, cs, ct, tb, sm, tn, rt, adf, acs; integer sgn1, sgn2; doublereal acmn, acmx; /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Compute the eigenvalues */ sm = *a + *c__; df = *a - *c__; adf = abs(df); tb = *b + *b; ab = abs(tb); if (abs(*a) > abs(*c__)) { acmx = *a; acmn = *c__; } else { acmx = *c__; acmn = *a; } if (adf > ab) { /* Computing 2nd power */ d__1 = ab / adf; rt = adf * sqrt(d__1 * d__1 + 1.); } else if (adf < ab) { /* Computing 2nd power */ d__1 = adf / ab; rt = ab * sqrt(d__1 * d__1 + 1.); } else { /* Includes case AB=ADF=0 */ rt = ab * sqrt(2.); } if (sm < 0.) { *rt1 = (sm - rt) * .5; sgn1 = -1; /* Order of execution important. */ /* To get fully accurate smaller eigenvalue, */ /* next line needs to be executed in higher precision. */ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b; } else if (sm > 0.) { *rt1 = (sm + rt) * .5; sgn1 = 1; /* Order of execution important. */ /* To get fully accurate smaller eigenvalue, */ /* next line needs to be executed in higher precision. */ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b; } else { /* Includes case RT1 = RT2 = 0 */ *rt1 = rt * .5; *rt2 = rt * -.5; sgn1 = 1; } /* Compute the eigenvector */ if (df >= 0.) { cs = df + rt; sgn2 = 1; } else { cs = df - rt; sgn2 = -1; } acs = abs(cs); if (acs > ab) { ct = -tb / cs; *sn1 = 1. / sqrt(ct * ct + 1.); *cs1 = ct * *sn1; } else { if (ab == 0.) { *cs1 = 1.; *sn1 = 0.; } else { tn = -cs / tb; *cs1 = 1. / sqrt(tn * tn + 1.); *sn1 = tn * *cs1; } } if (sgn1 == sgn2) { tn = *cs1; *cs1 = -(*sn1); *sn1 = tn; } return 0; /* End of DLAEV2 */ } /* dlaev2_ */ #ifdef __cplusplus } #endif