/* fortran/dlansy.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; /* > \brief \b DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the ele ment of largest absolute value of a real symmetric matrix. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLANSY + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK ) */ /* .. Scalar Arguments .. */ /* CHARACTER NORM, UPLO */ /* INTEGER LDA, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLANSY returns the value of the one norm, or the Frobenius norm, or */ /* > the infinity norm, or the element of largest absolute value of a */ /* > real symmetric matrix A. */ /* > \endverbatim */ /* > */ /* > \return DLANSY */ /* > \verbatim */ /* > */ /* > DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ /* > ( */ /* > ( norm1(A), NORM = '1', 'O' or 'o' */ /* > ( */ /* > ( normI(A), NORM = 'I' or 'i' */ /* > ( */ /* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ /* > */ /* > where norm1 denotes the one norm of a matrix (maximum column sum), */ /* > normI denotes the infinity norm of a matrix (maximum row sum) and */ /* > normF denotes the Frobenius norm of a matrix (square root of sum of */ /* > squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] NORM */ /* > \verbatim */ /* > NORM is CHARACTER*1 */ /* > Specifies the value to be returned in DLANSY as described */ /* > above. */ /* > \endverbatim */ /* > */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the upper or lower triangular part of the */ /* > symmetric matrix A is to be referenced. */ /* > = 'U': Upper triangular part of A is referenced */ /* > = 'L': Lower triangular part of A is referenced */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. When N = 0, DLANSY is */ /* > set to zero. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > The symmetric matrix A. If UPLO = 'U', the leading n by n */ /* > upper triangular part of A contains the upper triangular part */ /* > of the matrix A, and the strictly lower triangular part of A */ /* > is not referenced. If UPLO = 'L', the leading n by n lower */ /* > triangular part of A contains the lower triangular part of */ /* > the matrix A, and the strictly upper triangular part of A is */ /* > not referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(N,1). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */ /* > where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */ /* > WORK is not referenced. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleSYauxiliary */ /* ===================================================================== */ doublereal dlansy_(char *norm, char *uplo, integer *n, doublereal *a, integer *lda, doublereal *work, ftnlen norm_len, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal ret_val, d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j; doublereal sum, absa, scale; extern logical lsame_(char *, char *, ftnlen, ftnlen); doublereal value; extern logical disnan_(doublereal *); extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, doublereal *, doublereal *); /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; /* Function Body */ if (*n == 0) { value = 0.; } else if (lsame_(norm, (char *)"M", (ftnlen)1, (ftnlen)1)) { /* Find max(abs(A(i,j))). */ value = 0.; if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { sum = (d__1 = a[i__ + j * a_dim1], abs(d__1)); if (value < sum || disnan_(&sum)) { value = sum; } /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { sum = (d__1 = a[i__ + j * a_dim1], abs(d__1)); if (value < sum || disnan_(&sum)) { value = sum; } /* L30: */ } /* L40: */ } } } else if (lsame_(norm, (char *)"I", (ftnlen)1, (ftnlen)1) || lsame_(norm, (char *)"O", ( ftnlen)1, (ftnlen)1) || *(unsigned char *)norm == '1') { /* Find normI(A) ( = norm1(A), since A is symmetric). */ value = 0.; if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) { i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = 0.; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { absa = (d__1 = a[i__ + j * a_dim1], abs(d__1)); sum += absa; work[i__] += absa; /* L50: */ } work[j] = sum + (d__1 = a[j + j * a_dim1], abs(d__1)); /* L60: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { sum = work[i__]; if (value < sum || disnan_(&sum)) { value = sum; } /* L70: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.; /* L80: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = work[j] + (d__1 = a[j + j * a_dim1], abs(d__1)); i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { absa = (d__1 = a[i__ + j * a_dim1], abs(d__1)); sum += absa; work[i__] += absa; /* L90: */ } if (value < sum || disnan_(&sum)) { value = sum; } /* L100: */ } } } else if (lsame_(norm, (char *)"F", (ftnlen)1, (ftnlen)1) || lsame_(norm, (char *)"E", ( ftnlen)1, (ftnlen)1)) { /* Find normF(A). */ scale = 0.; sum = 1.; if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) { i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum); /* L110: */ } } else { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = *n - j; dlassq_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &scale, &sum); /* L120: */ } } sum *= 2; i__1 = *lda + 1; dlassq_(n, &a[a_offset], &i__1, &scale, &sum); value = scale * sqrt(sum); } ret_val = value; return ret_val; /* End of DLANSY */ } /* dlansy_ */ #ifdef __cplusplus } #endif