/* fortran/dlarfb.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b14 = 1.; static doublereal c_b25 = -1.; /* > \brief \b DLARFB applies a block reflector or its transpose to a general rectangular matrix. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLARFB + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */ /* T, LDT, C, LDC, WORK, LDWORK ) */ /* .. Scalar Arguments .. */ /* CHARACTER DIRECT, SIDE, STOREV, TRANS */ /* INTEGER K, LDC, LDT, LDV, LDWORK, M, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION C( LDC, * ), T( LDT, * ), V( LDV, * ), */ /* $ WORK( LDWORK, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLARFB applies a real block reflector H or its transpose H**T to a */ /* > real m by n matrix C, from either the left or the right. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > = 'L': apply H or H**T from the Left */ /* > = 'R': apply H or H**T from the Right */ /* > \endverbatim */ /* > */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > = 'N': apply H (No transpose) */ /* > = 'T': apply H**T (Transpose) */ /* > \endverbatim */ /* > */ /* > \param[in] DIRECT */ /* > \verbatim */ /* > DIRECT is CHARACTER*1 */ /* > Indicates how H is formed from a product of elementary */ /* > reflectors */ /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */ /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */ /* > \endverbatim */ /* > */ /* > \param[in] STOREV */ /* > \verbatim */ /* > STOREV is CHARACTER*1 */ /* > Indicates how the vectors which define the elementary */ /* > reflectors are stored: */ /* > = 'C': Columnwise */ /* > = 'R': Rowwise */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix C. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix C. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The order of the matrix T (= the number of elementary */ /* > reflectors whose product defines the block reflector). */ /* > If SIDE = 'L', M >= K >= 0; */ /* > if SIDE = 'R', N >= K >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] V */ /* > \verbatim */ /* > V is DOUBLE PRECISION array, dimension */ /* > (LDV,K) if STOREV = 'C' */ /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */ /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */ /* > The matrix V. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDV */ /* > \verbatim */ /* > LDV is INTEGER */ /* > The leading dimension of the array V. */ /* > If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); */ /* > if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); */ /* > if STOREV = 'R', LDV >= K. */ /* > \endverbatim */ /* > */ /* > \param[in] T */ /* > \verbatim */ /* > T is DOUBLE PRECISION array, dimension (LDT,K) */ /* > The triangular k by k matrix T in the representation of the */ /* > block reflector. */ /* > \endverbatim */ /* > */ /* > \param[in] LDT */ /* > \verbatim */ /* > LDT is INTEGER */ /* > The leading dimension of the array T. LDT >= K. */ /* > \endverbatim */ /* > */ /* > \param[in,out] C */ /* > \verbatim */ /* > C is DOUBLE PRECISION array, dimension (LDC,N) */ /* > On entry, the m by n matrix C. */ /* > On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDC */ /* > \verbatim */ /* > LDC is INTEGER */ /* > The leading dimension of the array C. LDC >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (LDWORK,K) */ /* > \endverbatim */ /* > */ /* > \param[in] LDWORK */ /* > \verbatim */ /* > LDWORK is INTEGER */ /* > The leading dimension of the array WORK. */ /* > If SIDE = 'L', LDWORK >= max(1,N); */ /* > if SIDE = 'R', LDWORK >= max(1,M). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleOTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The shape of the matrix V and the storage of the vectors which define */ /* > the H(i) is best illustrated by the following example with n = 5 and */ /* > k = 3. The elements equal to 1 are not stored; the corresponding */ /* > array elements are modified but restored on exit. The rest of the */ /* > array is not used. */ /* > */ /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */ /* > */ /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */ /* > ( v1 1 ) ( 1 v2 v2 v2 ) */ /* > ( v1 v2 1 ) ( 1 v3 v3 ) */ /* > ( v1 v2 v3 ) */ /* > ( v1 v2 v3 ) */ /* > */ /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */ /* > */ /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */ /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */ /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */ /* > ( 1 v3 ) */ /* > ( 1 ) */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlarfb_(char *side, char *trans, char *direct, char * storev, integer *m, integer *n, integer *k, doublereal *v, integer * ldv, doublereal *t, integer *ldt, doublereal *c__, integer *ldc, doublereal *work, integer *ldwork, ftnlen side_len, ftnlen trans_len, ftnlen direct_len, ftnlen storev_len) { /* System generated locals */ integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, work_offset, i__1, i__2; /* Local variables */ integer i__, j; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen); extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); char transt[1]; /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; work_dim1 = *ldwork; work_offset = 1 + work_dim1; work -= work_offset; /* Function Body */ if (*m <= 0 || *n <= 0) { return 0; } if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) { *(unsigned char *)transt = 'T'; } else { *(unsigned char *)transt = 'N'; } if (lsame_(storev, (char *)"C", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { /* Let V = ( V1 ) (first K rows) */ /* ( V2 ) */ /* where V1 is unit lower triangular. */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form H * C or H**T * C where C = ( C1 ) */ /* ( C2 ) */ /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */ /* W := C1**T */ i__1 = *k; for (j = 1; j <= i__1; ++j) { dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1); /* L10: */ } /* W := W * V1 */ dtrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", n, k, &c_b14, &v[v_offset], ldv, &work[work_offset], ldwork, ( ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); if (*m > *k) { /* W := W + C2**T * V2 */ i__1 = *m - *k; dgemm_((char *)"Transpose", (char *)"No transpose", n, k, &i__1, &c_b14, & c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1], ldv, &c_b14, &work[work_offset], ldwork, (ftnlen) 9, (ftnlen)12); } /* W := W * T**T or W * T */ dtrmm_((char *)"Right", (char *)"Upper", transt, (char *)"Non-unit", n, k, &c_b14, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - V * W**T */ if (*m > *k) { /* C2 := C2 - V2 * W**T */ i__1 = *m - *k; dgemm_((char *)"No transpose", (char *)"Transpose", &i__1, n, k, &c_b25, & v[*k + 1 + v_dim1], ldv, &work[work_offset], ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc, ( ftnlen)12, (ftnlen)9); } /* W := W * V1**T */ dtrmm_((char *)"Right", (char *)"Lower", (char *)"Transpose", (char *)"Unit", n, k, &c_b14, & v[v_offset], ldv, &work[work_offset], ldwork, (ftnlen) 5, (ftnlen)5, (ftnlen)9, (ftnlen)4); /* C1 := C1 - W**T */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1]; /* L20: */ } /* L30: */ } } else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { /* Form C * H or C * H**T where C = ( C1 C2 ) */ /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */ /* W := C1 */ i__1 = *k; for (j = 1; j <= i__1; ++j) { dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * work_dim1 + 1], &c__1); /* L40: */ } /* W := W * V1 */ dtrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", m, k, &c_b14, &v[v_offset], ldv, &work[work_offset], ldwork, ( ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); if (*n > *k) { /* W := W + C2 * V2 */ i__1 = *n - *k; dgemm_((char *)"No transpose", (char *)"No transpose", m, k, &i__1, & c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + 1 + v_dim1], ldv, &c_b14, &work[work_offset], ldwork, (ftnlen)12, (ftnlen)12); } /* W := W * T or W * T**T */ dtrmm_((char *)"Right", (char *)"Upper", trans, (char *)"Non-unit", m, k, &c_b14, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - W * V**T */ if (*n > *k) { /* C2 := C2 - W * V2**T */ i__1 = *n - *k; dgemm_((char *)"No transpose", (char *)"Transpose", m, &i__1, k, &c_b25, & work[work_offset], ldwork, &v[*k + 1 + v_dim1], ldv, &c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc, ( ftnlen)12, (ftnlen)9); } /* W := W * V1**T */ dtrmm_((char *)"Right", (char *)"Lower", (char *)"Transpose", (char *)"Unit", m, k, &c_b14, & v[v_offset], ldv, &work[work_offset], ldwork, (ftnlen) 5, (ftnlen)5, (ftnlen)9, (ftnlen)4); /* C1 := C1 - W */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1]; /* L50: */ } /* L60: */ } } } else { /* Let V = ( V1 ) */ /* ( V2 ) (last K rows) */ /* where V2 is unit upper triangular. */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form H * C or H**T * C where C = ( C1 ) */ /* ( C2 ) */ /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */ /* W := C2**T */ i__1 = *k; for (j = 1; j <= i__1; ++j) { dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1); /* L70: */ } /* W := W * V2 */ dtrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", n, k, &c_b14, &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); if (*m > *k) { /* W := W + C1**T * V1 */ i__1 = *m - *k; dgemm_((char *)"Transpose", (char *)"No transpose", n, k, &i__1, &c_b14, & c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, & work[work_offset], ldwork, (ftnlen)9, (ftnlen)12); } /* W := W * T**T or W * T */ dtrmm_((char *)"Right", (char *)"Lower", transt, (char *)"Non-unit", n, k, &c_b14, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - V * W**T */ if (*m > *k) { /* C1 := C1 - V1 * W**T */ i__1 = *m - *k; dgemm_((char *)"No transpose", (char *)"Transpose", &i__1, n, k, &c_b25, & v[v_offset], ldv, &work[work_offset], ldwork, & c_b14, &c__[c_offset], ldc, (ftnlen)12, (ftnlen)9) ; } /* W := W * V2**T */ dtrmm_((char *)"Right", (char *)"Upper", (char *)"Transpose", (char *)"Unit", n, k, &c_b14, & v[*m - *k + 1 + v_dim1], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)9, (ftnlen)4); /* C2 := C2 - W**T */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j * work_dim1]; /* L80: */ } /* L90: */ } } else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { /* Form C * H or C * H**T where C = ( C1 C2 ) */ /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */ /* W := C2 */ i__1 = *k; for (j = 1; j <= i__1; ++j) { dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[ j * work_dim1 + 1], &c__1); /* L100: */ } /* W := W * V2 */ dtrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", m, k, &c_b14, &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); if (*n > *k) { /* W := W + C1 * V1 */ i__1 = *n - *k; dgemm_((char *)"No transpose", (char *)"No transpose", m, k, &i__1, & c_b14, &c__[c_offset], ldc, &v[v_offset], ldv, & c_b14, &work[work_offset], ldwork, (ftnlen)12, ( ftnlen)12); } /* W := W * T or W * T**T */ dtrmm_((char *)"Right", (char *)"Lower", trans, (char *)"Non-unit", m, k, &c_b14, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - W * V**T */ if (*n > *k) { /* C1 := C1 - W * V1**T */ i__1 = *n - *k; dgemm_((char *)"No transpose", (char *)"Transpose", m, &i__1, k, &c_b25, & work[work_offset], ldwork, &v[v_offset], ldv, & c_b14, &c__[c_offset], ldc, (ftnlen)12, (ftnlen)9) ; } /* W := W * V2**T */ dtrmm_((char *)"Right", (char *)"Upper", (char *)"Transpose", (char *)"Unit", m, k, &c_b14, & v[*n - *k + 1 + v_dim1], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)9, (ftnlen)4); /* C2 := C2 - W */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j * work_dim1]; /* L110: */ } /* L120: */ } } } } else if (lsame_(storev, (char *)"R", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { /* Let V = ( V1 V2 ) (V1: first K columns) */ /* where V1 is unit upper triangular. */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form H * C or H**T * C where C = ( C1 ) */ /* ( C2 ) */ /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */ /* W := C1**T */ i__1 = *k; for (j = 1; j <= i__1; ++j) { dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1); /* L130: */ } /* W := W * V1**T */ dtrmm_((char *)"Right", (char *)"Upper", (char *)"Transpose", (char *)"Unit", n, k, &c_b14, & v[v_offset], ldv, &work[work_offset], ldwork, (ftnlen) 5, (ftnlen)5, (ftnlen)9, (ftnlen)4); if (*m > *k) { /* W := W + C2**T * V2**T */ i__1 = *m - *k; dgemm_((char *)"Transpose", (char *)"Transpose", n, k, &i__1, &c_b14, & c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 + 1], ldv, &c_b14, &work[work_offset], ldwork, ( ftnlen)9, (ftnlen)9); } /* W := W * T**T or W * T */ dtrmm_((char *)"Right", (char *)"Upper", transt, (char *)"Non-unit", n, k, &c_b14, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - V**T * W**T */ if (*m > *k) { /* C2 := C2 - V2**T * W**T */ i__1 = *m - *k; dgemm_((char *)"Transpose", (char *)"Transpose", &i__1, n, k, &c_b25, &v[( *k + 1) * v_dim1 + 1], ldv, &work[work_offset], ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc, ( ftnlen)9, (ftnlen)9); } /* W := W * V1 */ dtrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", n, k, &c_b14, &v[v_offset], ldv, &work[work_offset], ldwork, ( ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); /* C1 := C1 - W**T */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1]; /* L140: */ } /* L150: */ } } else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { /* Form C * H or C * H**T where C = ( C1 C2 ) */ /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */ /* W := C1 */ i__1 = *k; for (j = 1; j <= i__1; ++j) { dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * work_dim1 + 1], &c__1); /* L160: */ } /* W := W * V1**T */ dtrmm_((char *)"Right", (char *)"Upper", (char *)"Transpose", (char *)"Unit", m, k, &c_b14, & v[v_offset], ldv, &work[work_offset], ldwork, (ftnlen) 5, (ftnlen)5, (ftnlen)9, (ftnlen)4); if (*n > *k) { /* W := W + C2 * V2**T */ i__1 = *n - *k; dgemm_((char *)"No transpose", (char *)"Transpose", m, k, &i__1, &c_b14, & c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) * v_dim1 + 1], ldv, &c_b14, &work[work_offset], ldwork, (ftnlen)12, (ftnlen)9); } /* W := W * T or W * T**T */ dtrmm_((char *)"Right", (char *)"Upper", trans, (char *)"Non-unit", m, k, &c_b14, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - W * V */ if (*n > *k) { /* C2 := C2 - W * V2 */ i__1 = *n - *k; dgemm_((char *)"No transpose", (char *)"No transpose", m, &i__1, k, & c_b25, &work[work_offset], ldwork, &v[(*k + 1) * v_dim1 + 1], ldv, &c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc, (ftnlen)12, (ftnlen)12); } /* W := W * V1 */ dtrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", m, k, &c_b14, &v[v_offset], ldv, &work[work_offset], ldwork, ( ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); /* C1 := C1 - W */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1]; /* L170: */ } /* L180: */ } } } else { /* Let V = ( V1 V2 ) (V2: last K columns) */ /* where V2 is unit lower triangular. */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form H * C or H**T * C where C = ( C1 ) */ /* ( C2 ) */ /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */ /* W := C2**T */ i__1 = *k; for (j = 1; j <= i__1; ++j) { dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1); /* L190: */ } /* W := W * V2**T */ dtrmm_((char *)"Right", (char *)"Lower", (char *)"Transpose", (char *)"Unit", n, k, &c_b14, & v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[work_offset] , ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)9, (ftnlen)4); if (*m > *k) { /* W := W + C1**T * V1**T */ i__1 = *m - *k; dgemm_((char *)"Transpose", (char *)"Transpose", n, k, &i__1, &c_b14, & c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, & work[work_offset], ldwork, (ftnlen)9, (ftnlen)9); } /* W := W * T**T or W * T */ dtrmm_((char *)"Right", (char *)"Lower", transt, (char *)"Non-unit", n, k, &c_b14, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - V**T * W**T */ if (*m > *k) { /* C1 := C1 - V1**T * W**T */ i__1 = *m - *k; dgemm_((char *)"Transpose", (char *)"Transpose", &i__1, n, k, &c_b25, &v[ v_offset], ldv, &work[work_offset], ldwork, & c_b14, &c__[c_offset], ldc, (ftnlen)9, (ftnlen)9); } /* W := W * V2 */ dtrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", n, k, &c_b14, &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[ work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen) 12, (ftnlen)4); /* C2 := C2 - W**T */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j * work_dim1]; /* L200: */ } /* L210: */ } } else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { /* Form C * H or C * H' where C = ( C1 C2 ) */ /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */ /* W := C2 */ i__1 = *k; for (j = 1; j <= i__1; ++j) { dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[ j * work_dim1 + 1], &c__1); /* L220: */ } /* W := W * V2**T */ dtrmm_((char *)"Right", (char *)"Lower", (char *)"Transpose", (char *)"Unit", m, k, &c_b14, & v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[work_offset] , ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)9, (ftnlen)4); if (*n > *k) { /* W := W + C1 * V1**T */ i__1 = *n - *k; dgemm_((char *)"No transpose", (char *)"Transpose", m, k, &i__1, &c_b14, & c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, & work[work_offset], ldwork, (ftnlen)12, (ftnlen)9); } /* W := W * T or W * T**T */ dtrmm_((char *)"Right", (char *)"Lower", trans, (char *)"Non-unit", m, k, &c_b14, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - W * V */ if (*n > *k) { /* C1 := C1 - W * V1 */ i__1 = *n - *k; dgemm_((char *)"No transpose", (char *)"No transpose", m, &i__1, k, & c_b25, &work[work_offset], ldwork, &v[v_offset], ldv, &c_b14, &c__[c_offset], ldc, (ftnlen)12, ( ftnlen)12); } /* W := W * V2 */ dtrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", m, k, &c_b14, &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[ work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen) 12, (ftnlen)4); /* C1 := C1 - W */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j * work_dim1]; /* L230: */ } /* L240: */ } } } } return 0; /* End of DLARFB */ } /* dlarfb_ */ #ifdef __cplusplus } #endif