/* fortran/dlas2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DLAS2 computes singular values of a 2-by-2 triangular matrix. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLAS2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLAS2( F, G, H, SSMIN, SSMAX ) */ /* .. Scalar Arguments .. */ /* DOUBLE PRECISION F, G, H, SSMAX, SSMIN */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLAS2 computes the singular values of the 2-by-2 matrix */ /* > [ F G ] */ /* > [ 0 H ]. */ /* > On return, SSMIN is the smaller singular value and SSMAX is the */ /* > larger singular value. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] F */ /* > \verbatim */ /* > F is DOUBLE PRECISION */ /* > The (1,1) element of the 2-by-2 matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] G */ /* > \verbatim */ /* > G is DOUBLE PRECISION */ /* > The (1,2) element of the 2-by-2 matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] H */ /* > \verbatim */ /* > H is DOUBLE PRECISION */ /* > The (2,2) element of the 2-by-2 matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] SSMIN */ /* > \verbatim */ /* > SSMIN is DOUBLE PRECISION */ /* > The smaller singular value. */ /* > \endverbatim */ /* > */ /* > \param[out] SSMAX */ /* > \verbatim */ /* > SSMAX is DOUBLE PRECISION */ /* > The larger singular value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup OTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Barring over/underflow, all output quantities are correct to within */ /* > a few units in the last place (ulps), even in the absence of a guard */ /* > digit in addition/subtraction. */ /* > */ /* > In IEEE arithmetic, the code works correctly if one matrix element is */ /* > infinite. */ /* > */ /* > Overflow will not occur unless the largest singular value itself */ /* > overflows, or is within a few ulps of overflow. (On machines with */ /* > partial overflow, like the Cray, overflow may occur if the largest */ /* > singular value is within a factor of 2 of overflow.) */ /* > */ /* > Underflow is harmless if underflow is gradual. Otherwise, results */ /* > may correspond to a matrix modified by perturbations of size near */ /* > the underflow threshold. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlas2_(doublereal *f, doublereal *g, doublereal *h__, doublereal *ssmin, doublereal *ssmax) { /* System generated locals */ doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal c__, fa, ga, ha, as, at, au, fhmn, fhmx; /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* ==================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ fa = abs(*f); ga = abs(*g); ha = abs(*h__); fhmn = min(fa,ha); fhmx = max(fa,ha); if (fhmn == 0.) { *ssmin = 0.; if (fhmx == 0.) { *ssmax = ga; } else { /* Computing 2nd power */ d__1 = min(fhmx,ga) / max(fhmx,ga); *ssmax = max(fhmx,ga) * sqrt(d__1 * d__1 + 1.); } } else { if (ga < fhmx) { as = fhmn / fhmx + 1.; at = (fhmx - fhmn) / fhmx; /* Computing 2nd power */ d__1 = ga / fhmx; au = d__1 * d__1; c__ = 2. / (sqrt(as * as + au) + sqrt(at * at + au)); *ssmin = fhmn * c__; *ssmax = fhmx / c__; } else { au = fhmx / ga; if (au == 0.) { /* Avoid possible harmful underflow if exponent range */ /* asymmetric (true SSMIN may not underflow even if */ /* AU underflows) */ *ssmin = fhmn * fhmx / ga; *ssmax = ga; } else { as = fhmn / fhmx + 1.; at = (fhmx - fhmn) / fhmx; /* Computing 2nd power */ d__1 = as * au; /* Computing 2nd power */ d__2 = at * au; c__ = 1. / (sqrt(d__1 * d__1 + 1.) + sqrt(d__2 * d__2 + 1.)); *ssmin = fhmn * c__ * au; *ssmin += *ssmin; *ssmax = ga / (c__ + c__); } } } return 0; /* End of DLAS2 */ } /* dlas2_ */ #ifdef __cplusplus } #endif