/* fortran/dlasd4.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by dbdsdc. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLASD4 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER I, INFO, N */ /* DOUBLE PRECISION RHO, SIGMA */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION D( * ), DELTA( * ), WORK( * ), Z( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > This subroutine computes the square root of the I-th updated */ /* > eigenvalue of a positive symmetric rank-one modification to */ /* > a positive diagonal matrix whose entries are given as the squares */ /* > of the corresponding entries in the array d, and that */ /* > */ /* > 0 <= D(i) < D(j) for i < j */ /* > */ /* > and that RHO > 0. This is arranged by the calling routine, and is */ /* > no loss in generality. The rank-one modified system is thus */ /* > */ /* > diag( D ) * diag( D ) + RHO * Z * Z_transpose. */ /* > */ /* > where we assume the Euclidean norm of Z is 1. */ /* > */ /* > The method consists of approximating the rational functions in the */ /* > secular equation by simpler interpolating rational functions. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The length of all arrays. */ /* > \endverbatim */ /* > */ /* > \param[in] I */ /* > \verbatim */ /* > I is INTEGER */ /* > The index of the eigenvalue to be computed. 1 <= I <= N. */ /* > \endverbatim */ /* > */ /* > \param[in] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension ( N ) */ /* > The original eigenvalues. It is assumed that they are in */ /* > order, 0 <= D(I) < D(J) for I < J. */ /* > \endverbatim */ /* > */ /* > \param[in] Z */ /* > \verbatim */ /* > Z is DOUBLE PRECISION array, dimension ( N ) */ /* > The components of the updating vector. */ /* > \endverbatim */ /* > */ /* > \param[out] DELTA */ /* > \verbatim */ /* > DELTA is DOUBLE PRECISION array, dimension ( N ) */ /* > If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th */ /* > component. If N = 1, then DELTA(1) = 1. The vector DELTA */ /* > contains the information necessary to construct the */ /* > (singular) eigenvectors. */ /* > \endverbatim */ /* > */ /* > \param[in] RHO */ /* > \verbatim */ /* > RHO is DOUBLE PRECISION */ /* > The scalar in the symmetric updating formula. */ /* > \endverbatim */ /* > */ /* > \param[out] SIGMA */ /* > \verbatim */ /* > SIGMA is DOUBLE PRECISION */ /* > The computed sigma_I, the I-th updated eigenvalue. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension ( N ) */ /* > If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th */ /* > component. If N = 1, then WORK( 1 ) = 1. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > > 0: if INFO = 1, the updating process failed. */ /* > \endverbatim */ /* > \par Internal Parameters: */ /* ========================= */ /* > */ /* > \verbatim */ /* > Logical variable ORGATI (origin-at-i?) is used for distinguishing */ /* > whether D(i) or D(i+1) is treated as the origin. */ /* > */ /* > ORGATI = .true. origin at i */ /* > ORGATI = .false. origin at i+1 */ /* > */ /* > Logical variable SWTCH3 (switch-for-3-poles?) is for noting */ /* > if we are working with THREE poles! */ /* > */ /* > MAXIT is the maximum number of iterations allowed for each */ /* > eigenvalue. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup OTHERauxiliary */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Ren-Cang Li, Computer Science Division, University of California */ /* > at Berkeley, USA */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlasd4_(integer *n, integer *i__, doublereal *d__, doublereal *z__, doublereal *delta, doublereal *rho, doublereal * sigma, doublereal *work, integer *info) { /* System generated locals */ integer i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal a, b, c__; integer j; doublereal w, dd[3]; integer ii; doublereal dw, zz[3]; integer ip1; doublereal sq2, eta, phi, eps, tau, psi; integer iim1, iip1; doublereal tau2, dphi, sglb, dpsi, sgub; integer iter; doublereal temp, prew, temp1, temp2, dtiim, delsq, dtiip; integer niter; doublereal dtisq; logical swtch; doublereal dtnsq; extern /* Subroutine */ int dlaed6_(integer *, logical *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *) , dlasd5_(integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); doublereal delsq2, dtnsq1; logical swtch3; extern doublereal dlamch_(char *, ftnlen); logical orgati; doublereal erretm, dtipsq, rhoinv; logical geomavg; /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Since this routine is called in an inner loop, we do no argument */ /* checking. */ /* Quick return for N=1 and 2. */ /* Parameter adjustments */ --work; --delta; --z__; --d__; /* Function Body */ *info = 0; if (*n == 1) { /* Presumably, I=1 upon entry */ *sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]); delta[1] = 1.; work[1] = 1.; return 0; } if (*n == 2) { dlasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]); return 0; } /* Compute machine epsilon */ eps = dlamch_((char *)"Epsilon", (ftnlen)7); rhoinv = 1. / *rho; tau2 = 0.; /* The case I = N */ if (*i__ == *n) { /* Initialize some basic variables */ ii = *n - 1; niter = 1; /* Calculate initial guess */ temp = *rho / 2.; /* If ||Z||_2 is not one, then TEMP should be set to */ /* RHO * ||Z||_2^2 / TWO */ temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp)); i__1 = *n; for (j = 1; j <= i__1; ++j) { work[j] = d__[j] + d__[*n] + temp1; delta[j] = d__[j] - d__[*n] - temp1; /* L10: */ } psi = 0.; i__1 = *n - 2; for (j = 1; j <= i__1; ++j) { psi += z__[j] * z__[j] / (delta[j] * work[j]); /* L20: */ } c__ = rhoinv + psi; w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[* n] / (delta[*n] * work[*n]); if (w <= 0.) { temp1 = sqrt(d__[*n] * d__[*n] + *rho); temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[* n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] * z__[*n] / *rho; /* The following TAU2 is to approximate */ /* SIGMA_n^2 - D( N )*D( N ) */ if (c__ <= temp) { tau = *rho; } else { delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]); a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[* n]; b = z__[*n] * z__[*n] * delsq; if (a < 0.) { tau2 = b * 2. / (sqrt(a * a + b * 4. * c__) - a); } else { tau2 = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.); } tau = tau2 / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau2)); } /* It can be proved that */ /* D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU2 <= D(N)^2+RHO */ } else { delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]); a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]; b = z__[*n] * z__[*n] * delsq; /* The following TAU2 is to approximate */ /* SIGMA_n^2 - D( N )*D( N ) */ if (a < 0.) { tau2 = b * 2. / (sqrt(a * a + b * 4. * c__) - a); } else { tau2 = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.); } tau = tau2 / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau2)); /* It can be proved that */ /* D(N)^2 < D(N)^2+TAU2 < SIGMA(N)^2 < D(N)^2+RHO/2 */ } /* The following TAU is to approximate SIGMA_n - D( N ) */ /* TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) ) */ *sigma = d__[*n] + tau; i__1 = *n; for (j = 1; j <= i__1; ++j) { delta[j] = d__[j] - d__[*n] - tau; work[j] = d__[j] + d__[*n] + tau; /* L30: */ } /* Evaluate PSI and the derivative DPSI */ dpsi = 0.; psi = 0.; erretm = 0.; i__1 = ii; for (j = 1; j <= i__1; ++j) { temp = z__[j] / (delta[j] * work[j]); psi += z__[j] * temp; dpsi += temp * temp; erretm += psi; /* L40: */ } erretm = abs(erretm); /* Evaluate PHI and the derivative DPHI */ temp = z__[*n] / (delta[*n] * work[*n]); phi = z__[*n] * temp; dphi = temp * temp; erretm = (-phi - psi) * 8. + erretm - phi + rhoinv; /* $ + ABS( TAU2 )*( DPSI+DPHI ) */ w = rhoinv + phi + psi; /* Test for convergence */ if (abs(w) <= eps * erretm) { goto L240; } /* Calculate the new step */ ++niter; dtnsq1 = work[*n - 1] * delta[*n - 1]; dtnsq = work[*n] * delta[*n]; c__ = w - dtnsq1 * dpsi - dtnsq * dphi; a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi); b = dtnsq * dtnsq1 * w; if (c__ < 0.) { c__ = abs(c__); } if (c__ == 0.) { eta = *rho - *sigma * *sigma; } else if (a >= 0.) { eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ * 2.); } else { eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))) ); } /* Note, eta should be positive if w is negative, and */ /* eta should be negative otherwise. However, */ /* if for some reason caused by roundoff, eta*w > 0, */ /* we simply use one Newton step instead. This way */ /* will guarantee eta*w < 0. */ if (w * eta > 0.) { eta = -w / (dpsi + dphi); } temp = eta - dtnsq; if (temp > *rho) { eta = *rho + dtnsq; } eta /= *sigma + sqrt(eta + *sigma * *sigma); tau += eta; *sigma += eta; i__1 = *n; for (j = 1; j <= i__1; ++j) { delta[j] -= eta; work[j] += eta; /* L50: */ } /* Evaluate PSI and the derivative DPSI */ dpsi = 0.; psi = 0.; erretm = 0.; i__1 = ii; for (j = 1; j <= i__1; ++j) { temp = z__[j] / (work[j] * delta[j]); psi += z__[j] * temp; dpsi += temp * temp; erretm += psi; /* L60: */ } erretm = abs(erretm); /* Evaluate PHI and the derivative DPHI */ tau2 = work[*n] * delta[*n]; temp = z__[*n] / tau2; phi = z__[*n] * temp; dphi = temp * temp; erretm = (-phi - psi) * 8. + erretm - phi + rhoinv; /* $ + ABS( TAU2 )*( DPSI+DPHI ) */ w = rhoinv + phi + psi; /* Main loop to update the values of the array DELTA */ iter = niter + 1; for (niter = iter; niter <= 400; ++niter) { /* Test for convergence */ if (abs(w) <= eps * erretm) { goto L240; } /* Calculate the new step */ dtnsq1 = work[*n - 1] * delta[*n - 1]; dtnsq = work[*n] * delta[*n]; c__ = w - dtnsq1 * dpsi - dtnsq * dphi; a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi); b = dtnsq1 * dtnsq * w; if (a >= 0.) { eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / ( c__ * 2.); } else { eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs( d__1)))); } /* Note, eta should be positive if w is negative, and */ /* eta should be negative otherwise. However, */ /* if for some reason caused by roundoff, eta*w > 0, */ /* we simply use one Newton step instead. This way */ /* will guarantee eta*w < 0. */ if (w * eta > 0.) { eta = -w / (dpsi + dphi); } temp = eta - dtnsq; if (temp <= 0.) { eta /= 2.; } eta /= *sigma + sqrt(eta + *sigma * *sigma); tau += eta; *sigma += eta; i__1 = *n; for (j = 1; j <= i__1; ++j) { delta[j] -= eta; work[j] += eta; /* L70: */ } /* Evaluate PSI and the derivative DPSI */ dpsi = 0.; psi = 0.; erretm = 0.; i__1 = ii; for (j = 1; j <= i__1; ++j) { temp = z__[j] / (work[j] * delta[j]); psi += z__[j] * temp; dpsi += temp * temp; erretm += psi; /* L80: */ } erretm = abs(erretm); /* Evaluate PHI and the derivative DPHI */ tau2 = work[*n] * delta[*n]; temp = z__[*n] / tau2; phi = z__[*n] * temp; dphi = temp * temp; erretm = (-phi - psi) * 8. + erretm - phi + rhoinv; /* $ + ABS( TAU2 )*( DPSI+DPHI ) */ w = rhoinv + phi + psi; /* L90: */ } /* Return with INFO = 1, NITER = MAXIT and not converged */ *info = 1; goto L240; /* End for the case I = N */ } else { /* The case for I < N */ niter = 1; ip1 = *i__ + 1; /* Calculate initial guess */ delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]); delsq2 = delsq / 2.; sq2 = sqrt((d__[*i__] * d__[*i__] + d__[ip1] * d__[ip1]) / 2.); temp = delsq2 / (d__[*i__] + sq2); i__1 = *n; for (j = 1; j <= i__1; ++j) { work[j] = d__[j] + d__[*i__] + temp; delta[j] = d__[j] - d__[*i__] - temp; /* L100: */ } psi = 0.; i__1 = *i__ - 1; for (j = 1; j <= i__1; ++j) { psi += z__[j] * z__[j] / (work[j] * delta[j]); /* L110: */ } phi = 0.; i__1 = *i__ + 2; for (j = *n; j >= i__1; --j) { phi += z__[j] * z__[j] / (work[j] * delta[j]); /* L120: */ } c__ = rhoinv + psi + phi; w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[ ip1] * z__[ip1] / (work[ip1] * delta[ip1]); geomavg = FALSE_; if (w > 0.) { /* d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2 */ /* We choose d(i) as origin. */ orgati = TRUE_; ii = *i__; sglb = 0.; sgub = delsq2 / (d__[*i__] + sq2); a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1]; b = z__[*i__] * z__[*i__] * delsq; if (a > 0.) { tau2 = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs( d__1)))); } else { tau2 = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ * 2.); } /* TAU2 now is an estimation of SIGMA^2 - D( I )^2. The */ /* following, however, is the corresponding estimation of */ /* SIGMA - D( I ). */ tau = tau2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau2)); temp = sqrt(eps); if (d__[*i__] <= temp * d__[ip1] && (d__1 = z__[*i__], abs(d__1)) <= temp && d__[*i__] > 0.) { /* Computing MIN */ d__1 = d__[*i__] * 10.; tau = min(d__1,sgub); geomavg = TRUE_; } } else { /* (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2 */ /* We choose d(i+1) as origin. */ orgati = FALSE_; ii = ip1; sglb = -delsq2 / (d__[ii] + sq2); sgub = 0.; a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1]; b = z__[ip1] * z__[ip1] * delsq; if (a < 0.) { tau2 = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs( d__1)))); } else { tau2 = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) / (c__ * 2.); } /* TAU2 now is an estimation of SIGMA^2 - D( IP1 )^2. The */ /* following, however, is the corresponding estimation of */ /* SIGMA - D( IP1 ). */ tau = tau2 / (d__[ip1] + sqrt((d__1 = d__[ip1] * d__[ip1] + tau2, abs(d__1)))); } *sigma = d__[ii] + tau; i__1 = *n; for (j = 1; j <= i__1; ++j) { work[j] = d__[j] + d__[ii] + tau; delta[j] = d__[j] - d__[ii] - tau; /* L130: */ } iim1 = ii - 1; iip1 = ii + 1; /* Evaluate PSI and the derivative DPSI */ dpsi = 0.; psi = 0.; erretm = 0.; i__1 = iim1; for (j = 1; j <= i__1; ++j) { temp = z__[j] / (work[j] * delta[j]); psi += z__[j] * temp; dpsi += temp * temp; erretm += psi; /* L150: */ } erretm = abs(erretm); /* Evaluate PHI and the derivative DPHI */ dphi = 0.; phi = 0.; i__1 = iip1; for (j = *n; j >= i__1; --j) { temp = z__[j] / (work[j] * delta[j]); phi += z__[j] * temp; dphi += temp * temp; erretm += phi; /* L160: */ } w = rhoinv + phi + psi; /* W is the value of the secular function with */ /* its ii-th element removed. */ swtch3 = FALSE_; if (orgati) { if (w < 0.) { swtch3 = TRUE_; } } else { if (w > 0.) { swtch3 = TRUE_; } } if (ii == 1 || ii == *n) { swtch3 = FALSE_; } temp = z__[ii] / (work[ii] * delta[ii]); dw = dpsi + dphi + temp * temp; temp = z__[ii] * temp; w += temp; erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.; /* $ + ABS( TAU2 )*DW */ /* Test for convergence */ if (abs(w) <= eps * erretm) { goto L240; } if (w <= 0.) { sglb = max(sglb,tau); } else { sgub = min(sgub,tau); } /* Calculate the new step */ ++niter; if (! swtch3) { dtipsq = work[ip1] * delta[ip1]; dtisq = work[*i__] * delta[*i__]; if (orgati) { /* Computing 2nd power */ d__1 = z__[*i__] / dtisq; c__ = w - dtipsq * dw + delsq * (d__1 * d__1); } else { /* Computing 2nd power */ d__1 = z__[ip1] / dtipsq; c__ = w - dtisq * dw - delsq * (d__1 * d__1); } a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw; b = dtipsq * dtisq * w; if (c__ == 0.) { if (a == 0.) { if (orgati) { a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi + dphi); } else { a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi + dphi); } } eta = b / a; } else if (a <= 0.) { eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / ( c__ * 2.); } else { eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs( d__1)))); } } else { /* Interpolation using THREE most relevant poles */ dtiim = work[iim1] * delta[iim1]; dtiip = work[iip1] * delta[iip1]; temp = rhoinv + psi + phi; if (orgati) { temp1 = z__[iim1] / dtiim; temp1 *= temp1; c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[iip1]) * temp1; zz[0] = z__[iim1] * z__[iim1]; if (dpsi < temp1) { zz[2] = dtiip * dtiip * dphi; } else { zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi); } } else { temp1 = z__[iip1] / dtiip; temp1 *= temp1; c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[iip1]) * temp1; if (dphi < temp1) { zz[0] = dtiim * dtiim * dpsi; } else { zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1)); } zz[2] = z__[iip1] * z__[iip1]; } zz[1] = z__[ii] * z__[ii]; dd[0] = dtiim; dd[1] = delta[ii] * work[ii]; dd[2] = dtiip; dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info); if (*info != 0) { /* If INFO is not 0, i.e., DLAED6 failed, switch back */ /* to 2 pole interpolation. */ swtch3 = FALSE_; *info = 0; dtipsq = work[ip1] * delta[ip1]; dtisq = work[*i__] * delta[*i__]; if (orgati) { /* Computing 2nd power */ d__1 = z__[*i__] / dtisq; c__ = w - dtipsq * dw + delsq * (d__1 * d__1); } else { /* Computing 2nd power */ d__1 = z__[ip1] / dtipsq; c__ = w - dtisq * dw - delsq * (d__1 * d__1); } a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw; b = dtipsq * dtisq * w; if (c__ == 0.) { if (a == 0.) { if (orgati) { a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * ( dpsi + dphi); } else { a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi + dphi); } } eta = b / a; } else if (a <= 0.) { eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ * 2.); } else { eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))); } } } /* Note, eta should be positive if w is negative, and */ /* eta should be negative otherwise. However, */ /* if for some reason caused by roundoff, eta*w > 0, */ /* we simply use one Newton step instead. This way */ /* will guarantee eta*w < 0. */ if (w * eta >= 0.) { eta = -w / dw; } eta /= *sigma + sqrt(*sigma * *sigma + eta); temp = tau + eta; if (temp > sgub || temp < sglb) { if (w < 0.) { eta = (sgub - tau) / 2.; } else { eta = (sglb - tau) / 2.; } if (geomavg) { if (w < 0.) { if (tau > 0.) { eta = sqrt(sgub * tau) - tau; } } else { if (sglb > 0.) { eta = sqrt(sglb * tau) - tau; } } } } prew = w; tau += eta; *sigma += eta; i__1 = *n; for (j = 1; j <= i__1; ++j) { work[j] += eta; delta[j] -= eta; /* L170: */ } /* Evaluate PSI and the derivative DPSI */ dpsi = 0.; psi = 0.; erretm = 0.; i__1 = iim1; for (j = 1; j <= i__1; ++j) { temp = z__[j] / (work[j] * delta[j]); psi += z__[j] * temp; dpsi += temp * temp; erretm += psi; /* L180: */ } erretm = abs(erretm); /* Evaluate PHI and the derivative DPHI */ dphi = 0.; phi = 0.; i__1 = iip1; for (j = *n; j >= i__1; --j) { temp = z__[j] / (work[j] * delta[j]); phi += z__[j] * temp; dphi += temp * temp; erretm += phi; /* L190: */ } tau2 = work[ii] * delta[ii]; temp = z__[ii] / tau2; dw = dpsi + dphi + temp * temp; temp = z__[ii] * temp; w = rhoinv + phi + psi + temp; erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.; /* $ + ABS( TAU2 )*DW */ swtch = FALSE_; if (orgati) { if (-w > abs(prew) / 10.) { swtch = TRUE_; } } else { if (w > abs(prew) / 10.) { swtch = TRUE_; } } /* Main loop to update the values of the array DELTA and WORK */ iter = niter + 1; for (niter = iter; niter <= 400; ++niter) { /* Test for convergence */ if (abs(w) <= eps * erretm) { /* $ .OR. (SGUB-SGLB).LE.EIGHT*ABS(SGUB+SGLB) ) THEN */ goto L240; } if (w <= 0.) { sglb = max(sglb,tau); } else { sgub = min(sgub,tau); } /* Calculate the new step */ if (! swtch3) { dtipsq = work[ip1] * delta[ip1]; dtisq = work[*i__] * delta[*i__]; if (! swtch) { if (orgati) { /* Computing 2nd power */ d__1 = z__[*i__] / dtisq; c__ = w - dtipsq * dw + delsq * (d__1 * d__1); } else { /* Computing 2nd power */ d__1 = z__[ip1] / dtipsq; c__ = w - dtisq * dw - delsq * (d__1 * d__1); } } else { temp = z__[ii] / (work[ii] * delta[ii]); if (orgati) { dpsi += temp * temp; } else { dphi += temp * temp; } c__ = w - dtisq * dpsi - dtipsq * dphi; } a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw; b = dtipsq * dtisq * w; if (c__ == 0.) { if (a == 0.) { if (! swtch) { if (orgati) { a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi + dphi); } else { a = z__[ip1] * z__[ip1] + dtisq * dtisq * ( dpsi + dphi); } } else { a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi; } } eta = b / a; } else if (a <= 0.) { eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ * 2.); } else { eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))); } } else { /* Interpolation using THREE most relevant poles */ dtiim = work[iim1] * delta[iim1]; dtiip = work[iip1] * delta[iip1]; temp = rhoinv + psi + phi; if (swtch) { c__ = temp - dtiim * dpsi - dtiip * dphi; zz[0] = dtiim * dtiim * dpsi; zz[2] = dtiip * dtiip * dphi; } else { if (orgati) { temp1 = z__[iim1] / dtiim; temp1 *= temp1; temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[ iip1]) * temp1; c__ = temp - dtiip * (dpsi + dphi) - temp2; zz[0] = z__[iim1] * z__[iim1]; if (dpsi < temp1) { zz[2] = dtiip * dtiip * dphi; } else { zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi); } } else { temp1 = z__[iip1] / dtiip; temp1 *= temp1; temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[ iip1]) * temp1; c__ = temp - dtiim * (dpsi + dphi) - temp2; if (dphi < temp1) { zz[0] = dtiim * dtiim * dpsi; } else { zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1)); } zz[2] = z__[iip1] * z__[iip1]; } } dd[0] = dtiim; dd[1] = delta[ii] * work[ii]; dd[2] = dtiip; dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info); if (*info != 0) { /* If INFO is not 0, i.e., DLAED6 failed, switch */ /* back to two pole interpolation */ swtch3 = FALSE_; *info = 0; dtipsq = work[ip1] * delta[ip1]; dtisq = work[*i__] * delta[*i__]; if (! swtch) { if (orgati) { /* Computing 2nd power */ d__1 = z__[*i__] / dtisq; c__ = w - dtipsq * dw + delsq * (d__1 * d__1); } else { /* Computing 2nd power */ d__1 = z__[ip1] / dtipsq; c__ = w - dtisq * dw - delsq * (d__1 * d__1); } } else { temp = z__[ii] / (work[ii] * delta[ii]); if (orgati) { dpsi += temp * temp; } else { dphi += temp * temp; } c__ = w - dtisq * dpsi - dtipsq * dphi; } a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw; b = dtipsq * dtisq * w; if (c__ == 0.) { if (a == 0.) { if (! swtch) { if (orgati) { a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi + dphi); } else { a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi + dphi); } } else { a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi; } } eta = b / a; } else if (a <= 0.) { eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs( d__1)))) / (c__ * 2.); } else { eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))); } } } /* Note, eta should be positive if w is negative, and */ /* eta should be negative otherwise. However, */ /* if for some reason caused by roundoff, eta*w > 0, */ /* we simply use one Newton step instead. This way */ /* will guarantee eta*w < 0. */ if (w * eta >= 0.) { eta = -w / dw; } eta /= *sigma + sqrt(*sigma * *sigma + eta); temp = tau + eta; if (temp > sgub || temp < sglb) { if (w < 0.) { eta = (sgub - tau) / 2.; } else { eta = (sglb - tau) / 2.; } if (geomavg) { if (w < 0.) { if (tau > 0.) { eta = sqrt(sgub * tau) - tau; } } else { if (sglb > 0.) { eta = sqrt(sglb * tau) - tau; } } } } prew = w; tau += eta; *sigma += eta; i__1 = *n; for (j = 1; j <= i__1; ++j) { work[j] += eta; delta[j] -= eta; /* L200: */ } /* Evaluate PSI and the derivative DPSI */ dpsi = 0.; psi = 0.; erretm = 0.; i__1 = iim1; for (j = 1; j <= i__1; ++j) { temp = z__[j] / (work[j] * delta[j]); psi += z__[j] * temp; dpsi += temp * temp; erretm += psi; /* L210: */ } erretm = abs(erretm); /* Evaluate PHI and the derivative DPHI */ dphi = 0.; phi = 0.; i__1 = iip1; for (j = *n; j >= i__1; --j) { temp = z__[j] / (work[j] * delta[j]); phi += z__[j] * temp; dphi += temp * temp; erretm += phi; /* L220: */ } tau2 = work[ii] * delta[ii]; temp = z__[ii] / tau2; dw = dpsi + dphi + temp * temp; temp = z__[ii] * temp; w = rhoinv + phi + psi + temp; erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.; /* $ + ABS( TAU2 )*DW */ if (w * prew > 0. && abs(w) > abs(prew) / 10.) { swtch = ! swtch; } /* L230: */ } /* Return with INFO = 1, NITER = MAXIT and not converged */ *info = 1; } L240: return 0; /* End of DLASD4 */ } /* dlasd4_ */ #ifdef __cplusplus } #endif