/* fortran/dlatrd.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublereal c_b5 = -1.; static doublereal c_b6 = 1.; static integer c__1 = 1; static doublereal c_b16 = 0.; /* > \brief \b DLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiago nal form by an orthogonal similarity transformation. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLATRD + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW ) */ /* .. Scalar Arguments .. */ /* CHARACTER UPLO */ /* INTEGER LDA, LDW, N, NB */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), E( * ), TAU( * ), W( LDW, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLATRD reduces NB rows and columns of a real symmetric matrix A to */ /* > symmetric tridiagonal form by an orthogonal similarity */ /* > transformation Q**T * A * Q, and returns the matrices V and W which are */ /* > needed to apply the transformation to the unreduced part of A. */ /* > */ /* > If UPLO = 'U', DLATRD reduces the last NB rows and columns of a */ /* > matrix, of which the upper triangle is supplied; */ /* > if UPLO = 'L', DLATRD reduces the first NB rows and columns of a */ /* > matrix, of which the lower triangle is supplied. */ /* > */ /* > This is an auxiliary routine called by DSYTRD. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the upper or lower triangular part of the */ /* > symmetric matrix A is stored: */ /* > = 'U': Upper triangular */ /* > = 'L': Lower triangular */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] NB */ /* > \verbatim */ /* > NB is INTEGER */ /* > The number of rows and columns to be reduced. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */ /* > n-by-n upper triangular part of A contains the upper */ /* > triangular part of the matrix A, and the strictly lower */ /* > triangular part of A is not referenced. If UPLO = 'L', the */ /* > leading n-by-n lower triangular part of A contains the lower */ /* > triangular part of the matrix A, and the strictly upper */ /* > triangular part of A is not referenced. */ /* > On exit: */ /* > if UPLO = 'U', the last NB columns have been reduced to */ /* > tridiagonal form, with the diagonal elements overwriting */ /* > the diagonal elements of A; the elements above the diagonal */ /* > with the array TAU, represent the orthogonal matrix Q as a */ /* > product of elementary reflectors; */ /* > if UPLO = 'L', the first NB columns have been reduced to */ /* > tridiagonal form, with the diagonal elements overwriting */ /* > the diagonal elements of A; the elements below the diagonal */ /* > with the array TAU, represent the orthogonal matrix Q as a */ /* > product of elementary reflectors. */ /* > See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= (1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] E */ /* > \verbatim */ /* > E is DOUBLE PRECISION array, dimension (N-1) */ /* > If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */ /* > elements of the last NB columns of the reduced matrix; */ /* > if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */ /* > the first NB columns of the reduced matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] TAU */ /* > \verbatim */ /* > TAU is DOUBLE PRECISION array, dimension (N-1) */ /* > The scalar factors of the elementary reflectors, stored in */ /* > TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */ /* > See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[out] W */ /* > \verbatim */ /* > W is DOUBLE PRECISION array, dimension (LDW,NB) */ /* > The n-by-nb matrix W required to update the unreduced part */ /* > of A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDW */ /* > \verbatim */ /* > LDW is INTEGER */ /* > The leading dimension of the array W. LDW >= max(1,N). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleOTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > If UPLO = 'U', the matrix Q is represented as a product of elementary */ /* > reflectors */ /* > */ /* > Q = H(n) H(n-1) . . . H(n-nb+1). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**T */ /* > */ /* > where tau is a real scalar, and v is a real vector with */ /* > v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */ /* > and tau in TAU(i-1). */ /* > */ /* > If UPLO = 'L', the matrix Q is represented as a product of elementary */ /* > reflectors */ /* > */ /* > Q = H(1) H(2) . . . H(nb). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**T */ /* > */ /* > where tau is a real scalar, and v is a real vector with */ /* > v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */ /* > and tau in TAU(i). */ /* > */ /* > The elements of the vectors v together form the n-by-nb matrix V */ /* > which is needed, with W, to apply the transformation to the unreduced */ /* > part of the matrix, using a symmetric rank-2k update of the form: */ /* > A := A - V*W**T - W*V**T. */ /* > */ /* > The contents of A on exit are illustrated by the following examples */ /* > with n = 5 and nb = 2: */ /* > */ /* > if UPLO = 'U': if UPLO = 'L': */ /* > */ /* > ( a a a v4 v5 ) ( d ) */ /* > ( a a v4 v5 ) ( 1 d ) */ /* > ( a 1 v5 ) ( v1 1 a ) */ /* > ( d 1 ) ( v1 v2 a a ) */ /* > ( d ) ( v1 v2 a a a ) */ /* > */ /* > where d denotes a diagonal element of the reduced matrix, a denotes */ /* > an element of the original matrix that is unchanged, and vi denotes */ /* > an element of the vector defining H(i). */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlatrd_(char *uplo, integer *n, integer *nb, doublereal * a, integer *lda, doublereal *e, doublereal *tau, doublereal *w, integer *ldw, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3; /* Local variables */ integer i__, iw; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); doublereal alpha; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dsymv_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen), dlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *); /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --e; --tau; w_dim1 = *ldw; w_offset = 1 + w_dim1; w -= w_offset; /* Function Body */ if (*n <= 0) { return 0; } if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) { /* Reduce last NB columns of upper triangle */ i__1 = *n - *nb + 1; for (i__ = *n; i__ >= i__1; --i__) { iw = i__ - *n + *nb; if (i__ < *n) { /* Update A(1:i,i) */ i__2 = *n - i__; dgemv_((char *)"No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, & c_b6, &a[i__ * a_dim1 + 1], &c__1, (ftnlen)12); i__2 = *n - i__; dgemv_((char *)"No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, & c_b6, &a[i__ * a_dim1 + 1], &c__1, (ftnlen)12); } if (i__ > 1) { /* Generate elementary reflector H(i) to annihilate */ /* A(1:i-2,i) */ i__2 = i__ - 1; dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 + 1], &c__1, &tau[i__ - 1]); e[i__ - 1] = a[i__ - 1 + i__ * a_dim1]; a[i__ - 1 + i__ * a_dim1] = 1.; /* Compute W(1:i-1,i) */ i__2 = i__ - 1; dsymv_((char *)"Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], & c__1, (ftnlen)5); if (i__ < *n) { i__2 = i__ - 1; i__3 = *n - i__; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, & c_b16, &w[i__ + 1 + iw * w_dim1], &c__1, (ftnlen) 9); i__2 = i__ - 1; i__3 = *n - i__; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1, (ftnlen) 12); i__2 = i__ - 1; i__3 = *n - i__; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, & c_b16, &w[i__ + 1 + iw * w_dim1], &c__1, (ftnlen) 9); i__2 = i__ - 1; i__3 = *n - i__; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) * w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1, (ftnlen) 12); } i__2 = i__ - 1; dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1); i__2 = i__ - 1; alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w[iw * w_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &c__1); i__2 = i__ - 1; daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * w_dim1 + 1], &c__1); } /* L10: */ } } else { /* Reduce first NB columns of lower triangle */ i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { /* Update A(i:n,i) */ i__2 = *n - i__ + 1; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda, &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], & c__1, (ftnlen)12); i__2 = *n - i__ + 1; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw, &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], & c__1, (ftnlen)12); if (i__ < *n) { /* Generate elementary reflector H(i) to annihilate */ /* A(i+2:n,i) */ i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__]); e[i__] = a[i__ + 1 + i__ * a_dim1]; a[i__ + 1 + i__ * a_dim1] = 1.; /* Compute W(i+1:n,i) */ i__2 = *n - i__; dsymv_((char *)"Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1] , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)5); i__2 = *n - i__; i__3 = i__ - 1; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ i__ * w_dim1 + 1], &c__1, (ftnlen)9); i__2 = *n - i__; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[ i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)12); i__2 = *n - i__; i__3 = i__ - 1; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ i__ * w_dim1 + 1], &c__1, (ftnlen)9); i__2 = *n - i__; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 + w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[ i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)12); i__2 = *n - i__; dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; alpha = tau[i__] * -.5 * ddot_(&i__2, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1); i__2 = *n - i__; daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[ i__ + 1 + i__ * w_dim1], &c__1); } /* L20: */ } } return 0; /* End of DLATRD */ } /* dlatrd_ */ #ifdef __cplusplus } #endif