/* fortran/dlatrs.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b46 = .5;
/* > \brief \b DLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
*/
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLATRS + dependencies */
/* > */
/* > [TGZ] */
/* > */
/* > [ZIP] */
/* > */
/* > [TXT] */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, */
/* CNORM, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER DIAG, NORMIN, TRANS, UPLO */
/* INTEGER INFO, LDA, N */
/* DOUBLE PRECISION SCALE */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLATRS solves one of the triangular systems */
/* > */
/* > A *x = s*b or A**T *x = s*b */
/* > */
/* > with scaling to prevent overflow. Here A is an upper or lower */
/* > triangular matrix, A**T denotes the transpose of A, x and b are */
/* > n-element vectors, and s is a scaling factor, usually less than */
/* > or equal to 1, chosen so that the components of x will be less than */
/* > the overflow threshold. If the unscaled problem will not cause */
/* > overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A */
/* > is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
/* > non-trivial solution to A*x = 0 is returned. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > Specifies whether the matrix A is upper or lower triangular. */
/* > = 'U': Upper triangular */
/* > = 'L': Lower triangular */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > Specifies the operation applied to A. */
/* > = 'N': Solve A * x = s*b (No transpose) */
/* > = 'T': Solve A**T* x = s*b (Transpose) */
/* > = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose) */
/* > \endverbatim */
/* > */
/* > \param[in] DIAG */
/* > \verbatim */
/* > DIAG is CHARACTER*1 */
/* > Specifies whether or not the matrix A is unit triangular. */
/* > = 'N': Non-unit triangular */
/* > = 'U': Unit triangular */
/* > \endverbatim */
/* > */
/* > \param[in] NORMIN */
/* > \verbatim */
/* > NORMIN is CHARACTER*1 */
/* > Specifies whether CNORM has been set or not. */
/* > = 'Y': CNORM contains the column norms on entry */
/* > = 'N': CNORM is not set on entry. On exit, the norms will */
/* > be computed and stored in CNORM. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > The triangular matrix A. If UPLO = 'U', the leading n by n */
/* > upper triangular part of the array A contains the upper */
/* > triangular matrix, and the strictly lower triangular part of */
/* > A is not referenced. If UPLO = 'L', the leading n by n lower */
/* > triangular part of the array A contains the lower triangular */
/* > matrix, and the strictly upper triangular part of A is not */
/* > referenced. If DIAG = 'U', the diagonal elements of A are */
/* > also not referenced and are assumed to be 1. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max (1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] X */
/* > \verbatim */
/* > X is DOUBLE PRECISION array, dimension (N) */
/* > On entry, the right hand side b of the triangular system. */
/* > On exit, X is overwritten by the solution vector x. */
/* > \endverbatim */
/* > */
/* > \param[out] SCALE */
/* > \verbatim */
/* > SCALE is DOUBLE PRECISION */
/* > The scaling factor s for the triangular system */
/* > A * x = s*b or A**T* x = s*b. */
/* > If SCALE = 0, the matrix A is singular or badly scaled, and */
/* > the vector x is an exact or approximate solution to A*x = 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] CNORM */
/* > \verbatim */
/* > CNORM is DOUBLE PRECISION array, dimension (N) */
/* > */
/* > If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
/* > contains the norm of the off-diagonal part of the j-th column */
/* > of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
/* > to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
/* > must be greater than or equal to the 1-norm. */
/* > */
/* > If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
/* > returns the 1-norm of the offdiagonal part of the j-th column */
/* > of A. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -k, the k-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleOTHERauxiliary */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > A rough bound on x is computed; if that is less than overflow, DTRSV */
/* > is called, otherwise, specific code is used which checks for possible */
/* > overflow or divide-by-zero at every operation. */
/* > */
/* > A columnwise scheme is used for solving A*x = b. The basic algorithm */
/* > if A is lower triangular is */
/* > */
/* > x[1:n] := b[1:n] */
/* > for j = 1, ..., n */
/* > x(j) := x(j) / A(j,j) */
/* > x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
/* > end */
/* > */
/* > Define bounds on the components of x after j iterations of the loop: */
/* > M(j) = bound on x[1:j] */
/* > G(j) = bound on x[j+1:n] */
/* > Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. */
/* > */
/* > Then for iteration j+1 we have */
/* > M(j+1) <= G(j) / | A(j+1,j+1) | */
/* > G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
/* > <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
/* > */
/* > where CNORM(j+1) is greater than or equal to the infinity-norm of */
/* > column j+1 of A, not counting the diagonal. Hence */
/* > */
/* > G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
/* > 1<=i<=j */
/* > and */
/* > */
/* > |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
/* > 1<=i< j */
/* > */
/* > Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the */
/* > reciprocal of the largest M(j), j=1,..,n, is larger than */
/* > max(underflow, 1/overflow). */
/* > */
/* > The bound on x(j) is also used to determine when a step in the */
/* > columnwise method can be performed without fear of overflow. If */
/* > the computed bound is greater than a large constant, x is scaled to */
/* > prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
/* > 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
/* > */
/* > Similarly, a row-wise scheme is used to solve A**T*x = b. The basic */
/* > algorithm for A upper triangular is */
/* > */
/* > for j = 1, ..., n */
/* > x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j) */
/* > end */
/* > */
/* > We simultaneously compute two bounds */
/* > G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j */
/* > M(j) = bound on x(i), 1<=i<=j */
/* > */
/* > The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we */
/* > add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
/* > Then the bound on x(j) is */
/* > */
/* > M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
/* > */
/* > <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
/* > 1<=i<=j */
/* > */
/* > and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater */
/* > than max(underflow, 1/overflow). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dlatrs_(char *uplo, char *trans, char *diag, char *
normin, integer *n, doublereal *a, integer *lda, doublereal *x,
doublereal *scale, doublereal *cnorm, integer *info, ftnlen uplo_len,
ftnlen trans_len, ftnlen diag_len, ftnlen normin_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1, d__2, d__3;
/* Local variables */
integer i__, j;
doublereal xj, rec, tjj;
integer jinc;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
doublereal xbnd;
integer imax;
doublereal tmax, tjjs, xmax, grow, sumj;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *, ftnlen, ftnlen);
doublereal tscal, uscal;
extern doublereal dasum_(integer *, doublereal *, integer *);
integer jlast;
extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
logical upper;
extern /* Subroutine */ int dtrsv_(char *, char *, char *, integer *,
doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen,
ftnlen);
extern doublereal dlamch_(char *, ftnlen), dlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *, ftnlen);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal bignum;
logical notran;
integer jfirst;
doublereal smlnum;
logical nounit;
/* -- LAPACK auxiliary routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
--cnorm;
/* Function Body */
*info = 0;
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
notran = lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1);
nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1);
/* Test the input parameters. */
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
*info = -1;
} else if (! notran && ! lsame_(trans, (char *)"T", (ftnlen)1, (ftnlen)1) && !
lsame_(trans, (char *)"C", (ftnlen)1, (ftnlen)1)) {
*info = -2;
} else if (! nounit && ! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1)) {
*info = -3;
} else if (! lsame_(normin, (char *)"Y", (ftnlen)1, (ftnlen)1) && ! lsame_(normin,
(char *)"N", (ftnlen)1, (ftnlen)1)) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < max(1,*n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DLATRS", &i__1, (ftnlen)6);
return 0;
}
/* Quick return if possible */
*scale = 1.;
if (*n == 0) {
return 0;
}
/* Determine machine dependent parameters to control overflow. */
smlnum = dlamch_((char *)"Safe minimum", (ftnlen)12) / dlamch_((char *)"Precision", (
ftnlen)9);
bignum = 1. / smlnum;
if (lsame_(normin, (char *)"N", (ftnlen)1, (ftnlen)1)) {
/* Compute the 1-norm of each column, not including the diagonal. */
if (upper) {
/* A is upper triangular. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j - 1;
cnorm[j] = dasum_(&i__2, &a[j * a_dim1 + 1], &c__1);
/* L10: */
}
} else {
/* A is lower triangular. */
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = *n - j;
cnorm[j] = dasum_(&i__2, &a[j + 1 + j * a_dim1], &c__1);
/* L20: */
}
cnorm[*n] = 0.;
}
}
/* Scale the column norms by TSCAL if the maximum element in CNORM is */
/* greater than BIGNUM. */
imax = idamax_(n, &cnorm[1], &c__1);
tmax = cnorm[imax];
if (tmax <= bignum) {
tscal = 1.;
} else {
/* Avoid NaN generation if entries in CNORM exceed the */
/* overflow threshold */
if (tmax <= dlamch_((char *)"Overflow", (ftnlen)8)) {
/* Case 1: All entries in CNORM are valid floating-point numbers */
tscal = 1. / (smlnum * tmax);
dscal_(n, &tscal, &cnorm[1], &c__1);
} else {
/* Case 2: At least one column norm of A cannot be represented */
/* as floating-point number. Find the offdiagonal entry A( I, J ) */
/* with the largest absolute value. If this entry is not +/- Infinity, */
/* use this value as TSCAL. */
tmax = 0.;
if (upper) {
/* A is upper triangular. */
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
/* Computing MAX */
i__2 = j - 1;
d__1 = dlange_((char *)"M", &i__2, &c__1, &a[j * a_dim1 + 1], &
c__1, &sumj, (ftnlen)1);
tmax = max(d__1,tmax);
}
} else {
/* A is lower triangular. */
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__2 = *n - j;
d__1 = dlange_((char *)"M", &i__2, &c__1, &a[j + 1 + j * a_dim1],
&c__1, &sumj, (ftnlen)1);
tmax = max(d__1,tmax);
}
}
if (tmax <= dlamch_((char *)"Overflow", (ftnlen)8)) {
tscal = 1. / (smlnum * tmax);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (cnorm[j] <= dlamch_((char *)"Overflow", (ftnlen)8)) {
cnorm[j] *= tscal;
} else {
/* Recompute the 1-norm without introducing Infinity */
/* in the summation */
cnorm[j] = 0.;
if (upper) {
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
cnorm[j] += tscal * (d__1 = a[i__ + j *
a_dim1], abs(d__1));
}
} else {
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
cnorm[j] += tscal * (d__1 = a[i__ + j *
a_dim1], abs(d__1));
}
}
}
}
} else {
/* At least one entry of A is not a valid floating-point entry. */
/* Rely on TRSV to propagate Inf and NaN. */
dtrsv_(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1,
(ftnlen)1, (ftnlen)1, (ftnlen)1);
return 0;
}
}
}
/* Compute a bound on the computed solution vector to see if the */
/* Level 2 BLAS routine DTRSV can be used. */
j = idamax_(n, &x[1], &c__1);
xmax = (d__1 = x[j], abs(d__1));
xbnd = xmax;
if (notran) {
/* Compute the growth in A * x = b. */
if (upper) {
jfirst = *n;
jlast = 1;
jinc = -1;
} else {
jfirst = 1;
jlast = *n;
jinc = 1;
}
if (tscal != 1.) {
grow = 0.;
goto L50;
}
if (nounit) {
/* A is non-unit triangular. */
/* Compute GROW = 1/G(j) and XBND = 1/M(j). */
/* Initially, G(0) = max{x(i), i=1,...,n}. */
grow = 1. / max(xbnd,smlnum);
xbnd = grow;
i__1 = jlast;
i__2 = jinc;
for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Exit the loop if the growth factor is too small. */
if (grow <= smlnum) {
goto L50;
}
/* M(j) = G(j-1) / abs(A(j,j)) */
tjj = (d__1 = a[j + j * a_dim1], abs(d__1));
/* Computing MIN */
d__1 = xbnd, d__2 = min(1.,tjj) * grow;
xbnd = min(d__1,d__2);
if (tjj + cnorm[j] >= smlnum) {
/* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
grow *= tjj / (tjj + cnorm[j]);
} else {
/* G(j) could overflow, set GROW to 0. */
grow = 0.;
}
/* L30: */
}
grow = xbnd;
} else {
/* A is unit triangular. */
/* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */
/* Computing MIN */
d__1 = 1., d__2 = 1. / max(xbnd,smlnum);
grow = min(d__1,d__2);
i__2 = jlast;
i__1 = jinc;
for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
/* Exit the loop if the growth factor is too small. */
if (grow <= smlnum) {
goto L50;
}
/* G(j) = G(j-1)*( 1 + CNORM(j) ) */
grow *= 1. / (cnorm[j] + 1.);
/* L40: */
}
}
L50:
;
} else {
/* Compute the growth in A**T * x = b. */
if (upper) {
jfirst = 1;
jlast = *n;
jinc = 1;
} else {
jfirst = *n;
jlast = 1;
jinc = -1;
}
if (tscal != 1.) {
grow = 0.;
goto L80;
}
if (nounit) {
/* A is non-unit triangular. */
/* Compute GROW = 1/G(j) and XBND = 1/M(j). */
/* Initially, M(0) = max{x(i), i=1,...,n}. */
grow = 1. / max(xbnd,smlnum);
xbnd = grow;
i__1 = jlast;
i__2 = jinc;
for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Exit the loop if the growth factor is too small. */
if (grow <= smlnum) {
goto L80;
}
/* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
xj = cnorm[j] + 1.;
/* Computing MIN */
d__1 = grow, d__2 = xbnd / xj;
grow = min(d__1,d__2);
/* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
tjj = (d__1 = a[j + j * a_dim1], abs(d__1));
if (xj > tjj) {
xbnd *= tjj / xj;
}
/* L60: */
}
grow = min(grow,xbnd);
} else {
/* A is unit triangular. */
/* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */
/* Computing MIN */
d__1 = 1., d__2 = 1. / max(xbnd,smlnum);
grow = min(d__1,d__2);
i__2 = jlast;
i__1 = jinc;
for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
/* Exit the loop if the growth factor is too small. */
if (grow <= smlnum) {
goto L80;
}
/* G(j) = ( 1 + CNORM(j) )*G(j-1) */
xj = cnorm[j] + 1.;
grow /= xj;
/* L70: */
}
}
L80:
;
}
if (grow * tscal > smlnum) {
/* Use the Level 2 BLAS solve if the reciprocal of the bound on */
/* elements of X is not too small. */
dtrsv_(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1, (ftnlen)
1, (ftnlen)1, (ftnlen)1);
} else {
/* Use a Level 1 BLAS solve, scaling intermediate results. */
if (xmax > bignum) {
/* Scale X so that its components are less than or equal to */
/* BIGNUM in absolute value. */
*scale = bignum / xmax;
dscal_(n, scale, &x[1], &c__1);
xmax = bignum;
}
if (notran) {
/* Solve A * x = b */
i__1 = jlast;
i__2 = jinc;
for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
xj = (d__1 = x[j], abs(d__1));
if (nounit) {
tjjs = a[j + j * a_dim1] * tscal;
} else {
tjjs = tscal;
if (tscal == 1.) {
goto L100;
}
}
tjj = abs(tjjs);
if (tjj > smlnum) {
/* abs(A(j,j)) > SMLNUM: */
if (tjj < 1.) {
if (xj > tjj * bignum) {
/* Scale x by 1/b(j). */
rec = 1. / xj;
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
x[j] /= tjjs;
xj = (d__1 = x[j], abs(d__1));
} else if (tjj > 0.) {
/* 0 < abs(A(j,j)) <= SMLNUM: */
if (xj > tjj * bignum) {
/* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
/* to avoid overflow when dividing by A(j,j). */
rec = tjj * bignum / xj;
if (cnorm[j] > 1.) {
/* Scale by 1/CNORM(j) to avoid overflow when */
/* multiplying x(j) times column j. */
rec /= cnorm[j];
}
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
x[j] /= tjjs;
xj = (d__1 = x[j], abs(d__1));
} else {
/* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
/* scale = 0, and compute a solution to A*x = 0. */
i__3 = *n;
for (i__ = 1; i__ <= i__3; ++i__) {
x[i__] = 0.;
/* L90: */
}
x[j] = 1.;
xj = 1.;
*scale = 0.;
xmax = 0.;
}
L100:
/* Scale x if necessary to avoid overflow when adding a */
/* multiple of column j of A. */
if (xj > 1.) {
rec = 1. / xj;
if (cnorm[j] > (bignum - xmax) * rec) {
/* Scale x by 1/(2*abs(x(j))). */
rec *= .5;
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
}
} else if (xj * cnorm[j] > bignum - xmax) {
/* Scale x by 1/2. */
dscal_(n, &c_b46, &x[1], &c__1);
*scale *= .5;
}
if (upper) {
if (j > 1) {
/* Compute the update */
/* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
i__3 = j - 1;
d__1 = -x[j] * tscal;
daxpy_(&i__3, &d__1, &a[j * a_dim1 + 1], &c__1, &x[1],
&c__1);
i__3 = j - 1;
i__ = idamax_(&i__3, &x[1], &c__1);
xmax = (d__1 = x[i__], abs(d__1));
}
} else {
if (j < *n) {
/* Compute the update */
/* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
i__3 = *n - j;
d__1 = -x[j] * tscal;
daxpy_(&i__3, &d__1, &a[j + 1 + j * a_dim1], &c__1, &
x[j + 1], &c__1);
i__3 = *n - j;
i__ = j + idamax_(&i__3, &x[j + 1], &c__1);
xmax = (d__1 = x[i__], abs(d__1));
}
}
/* L110: */
}
} else {
/* Solve A**T * x = b */
i__2 = jlast;
i__1 = jinc;
for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
/* Compute x(j) = b(j) - sum A(k,j)*x(k). */
/* k<>j */
xj = (d__1 = x[j], abs(d__1));
uscal = tscal;
rec = 1. / max(xmax,1.);
if (cnorm[j] > (bignum - xj) * rec) {
/* If x(j) could overflow, scale x by 1/(2*XMAX). */
rec *= .5;
if (nounit) {
tjjs = a[j + j * a_dim1] * tscal;
} else {
tjjs = tscal;
}
tjj = abs(tjjs);
if (tjj > 1.) {
/* Divide by A(j,j) when scaling x if A(j,j) > 1. */
/* Computing MIN */
d__1 = 1., d__2 = rec * tjj;
rec = min(d__1,d__2);
uscal /= tjjs;
}
if (rec < 1.) {
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
sumj = 0.;
if (uscal == 1.) {
/* If the scaling needed for A in the dot product is 1, */
/* call DDOT to perform the dot product. */
if (upper) {
i__3 = j - 1;
sumj = ddot_(&i__3, &a[j * a_dim1 + 1], &c__1, &x[1],
&c__1);
} else if (j < *n) {
i__3 = *n - j;
sumj = ddot_(&i__3, &a[j + 1 + j * a_dim1], &c__1, &x[
j + 1], &c__1);
}
} else {
/* Otherwise, use in-line code for the dot product. */
if (upper) {
i__3 = j - 1;
for (i__ = 1; i__ <= i__3; ++i__) {
sumj += a[i__ + j * a_dim1] * uscal * x[i__];
/* L120: */
}
} else if (j < *n) {
i__3 = *n;
for (i__ = j + 1; i__ <= i__3; ++i__) {
sumj += a[i__ + j * a_dim1] * uscal * x[i__];
/* L130: */
}
}
}
if (uscal == tscal) {
/* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j) */
/* was not used to scale the dotproduct. */
x[j] -= sumj;
xj = (d__1 = x[j], abs(d__1));
if (nounit) {
tjjs = a[j + j * a_dim1] * tscal;
} else {
tjjs = tscal;
if (tscal == 1.) {
goto L150;
}
}
/* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
tjj = abs(tjjs);
if (tjj > smlnum) {
/* abs(A(j,j)) > SMLNUM: */
if (tjj < 1.) {
if (xj > tjj * bignum) {
/* Scale X by 1/abs(x(j)). */
rec = 1. / xj;
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
x[j] /= tjjs;
} else if (tjj > 0.) {
/* 0 < abs(A(j,j)) <= SMLNUM: */
if (xj > tjj * bignum) {
/* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
rec = tjj * bignum / xj;
dscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
x[j] /= tjjs;
} else {
/* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
/* scale = 0, and compute a solution to A**T*x = 0. */
i__3 = *n;
for (i__ = 1; i__ <= i__3; ++i__) {
x[i__] = 0.;
/* L140: */
}
x[j] = 1.;
*scale = 0.;
xmax = 0.;
}
L150:
;
} else {
/* Compute x(j) := x(j) / A(j,j) - sumj if the dot */
/* product has already been divided by 1/A(j,j). */
x[j] = x[j] / tjjs - sumj;
}
/* Computing MAX */
d__2 = xmax, d__3 = (d__1 = x[j], abs(d__1));
xmax = max(d__2,d__3);
/* L160: */
}
}
*scale /= tscal;
}
/* Scale the column norms by 1/TSCAL for return. */
if (tscal != 1.) {
d__1 = 1. / tscal;
dscal_(n, &d__1, &cnorm[1], &c__1);
}
return 0;
/* End of DLATRS */
} /* dlatrs_ */
#ifdef __cplusplus
}
#endif