/* fortran/dsygvd.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublereal c_b11 = 1.; /* > \brief \b DSYGVD */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DSYGVD + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, */ /* LWORK, IWORK, LIWORK, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER JOBZ, UPLO */ /* INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N */ /* .. */ /* .. Array Arguments .. */ /* INTEGER IWORK( * ) */ /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DSYGVD computes all the eigenvalues, and optionally, the eigenvectors */ /* > of a real generalized symmetric-definite eigenproblem, of the form */ /* > A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */ /* > B are assumed to be symmetric and B is also positive definite. */ /* > If eigenvectors are desired, it uses a divide and conquer algorithm. */ /* > */ /* > The divide and conquer algorithm makes very mild assumptions about */ /* > floating point arithmetic. It will work on machines with a guard */ /* > digit in add/subtract, or on those binary machines without guard */ /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* > without guard digits, but we know of none. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] ITYPE */ /* > \verbatim */ /* > ITYPE is INTEGER */ /* > Specifies the problem type to be solved: */ /* > = 1: A*x = (lambda)*B*x */ /* > = 2: A*B*x = (lambda)*x */ /* > = 3: B*A*x = (lambda)*x */ /* > \endverbatim */ /* > */ /* > \param[in] JOBZ */ /* > \verbatim */ /* > JOBZ is CHARACTER*1 */ /* > = 'N': Compute eigenvalues only; */ /* > = 'V': Compute eigenvalues and eigenvectors. */ /* > \endverbatim */ /* > */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > = 'U': Upper triangles of A and B are stored; */ /* > = 'L': Lower triangles of A and B are stored. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrices A and B. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA, N) */ /* > On entry, the symmetric matrix A. If UPLO = 'U', the */ /* > leading N-by-N upper triangular part of A contains the */ /* > upper triangular part of the matrix A. If UPLO = 'L', */ /* > the leading N-by-N lower triangular part of A contains */ /* > the lower triangular part of the matrix A. */ /* > */ /* > On exit, if JOBZ = 'V', then if INFO = 0, A contains the */ /* > matrix Z of eigenvectors. The eigenvectors are normalized */ /* > as follows: */ /* > if ITYPE = 1 or 2, Z**T*B*Z = I; */ /* > if ITYPE = 3, Z**T*inv(B)*Z = I. */ /* > If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */ /* > or the lower triangle (if UPLO='L') of A, including the */ /* > diagonal, is destroyed. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is DOUBLE PRECISION array, dimension (LDB, N) */ /* > On entry, the symmetric matrix B. If UPLO = 'U', the */ /* > leading N-by-N upper triangular part of B contains the */ /* > upper triangular part of the matrix B. If UPLO = 'L', */ /* > the leading N-by-N lower triangular part of B contains */ /* > the lower triangular part of the matrix B. */ /* > */ /* > On exit, if INFO <= N, the part of B containing the matrix is */ /* > overwritten by the triangular factor U or L from the Cholesky */ /* > factorization B = U**T*U or B = L*L**T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of the array B. LDB >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] W */ /* > \verbatim */ /* > W is DOUBLE PRECISION array, dimension (N) */ /* > If INFO = 0, the eigenvalues in ascending order. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. */ /* > If N <= 1, LWORK >= 1. */ /* > If JOBZ = 'N' and N > 1, LWORK >= 2*N+1. */ /* > If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal sizes of the WORK and IWORK */ /* > arrays, returns these values as the first entries of the WORK */ /* > and IWORK arrays, and no error message related to LWORK or */ /* > LIWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] IWORK */ /* > \verbatim */ /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */ /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LIWORK */ /* > \verbatim */ /* > LIWORK is INTEGER */ /* > The dimension of the array IWORK. */ /* > If N <= 1, LIWORK >= 1. */ /* > If JOBZ = 'N' and N > 1, LIWORK >= 1. */ /* > If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */ /* > */ /* > If LIWORK = -1, then a workspace query is assumed; the */ /* > routine only calculates the optimal sizes of the WORK and */ /* > IWORK arrays, returns these values as the first entries of */ /* > the WORK and IWORK arrays, and no error message related to */ /* > LWORK or LIWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: DPOTRF or DSYEVD returned an error code: */ /* > <= N: if INFO = i and JOBZ = 'N', then the algorithm */ /* > failed to converge; i off-diagonal elements of an */ /* > intermediate tridiagonal form did not converge to */ /* > zero; */ /* > if INFO = i and JOBZ = 'V', then the algorithm */ /* > failed to compute an eigenvalue while working on */ /* > the submatrix lying in rows and columns INFO/(N+1) */ /* > through mod(INFO,N+1); */ /* > > N: if INFO = N + i, for 1 <= i <= N, then the leading */ /* > minor of order i of B is not positive definite. */ /* > The factorization of B could not be completed and */ /* > no eigenvalues or eigenvectors were computed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleSYeigen */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Modified so that no backsubstitution is performed if DSYEVD fails to */ /* > converge (NEIG in old code could be greater than N causing out of */ /* > bounds reference to A - reported by Ralf Meyer). Also corrected the */ /* > description of INFO and the test on ITYPE. Sven, 16 Feb 05. */ /* > \endverbatim */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* > */ /* ===================================================================== */ /* Subroutine */ int dsygvd_(integer *itype, char *jobz, char *uplo, integer * n, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *w, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info, ftnlen jobz_len, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; doublereal d__1, d__2; /* Local variables */ integer lopt; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); integer lwmin; char trans[1]; integer liopt; extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); logical upper, wantz; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dpotrf_( char *, integer *, doublereal *, integer *, integer *, ftnlen); integer liwmin; extern /* Subroutine */ int dsyevd_(char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, ftnlen, ftnlen), dsygst_(integer *, char *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, ftnlen); logical lquery; /* -- LAPACK driver routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --w; --work; --iwork; /* Function Body */ wantz = lsame_(jobz, (char *)"V", (ftnlen)1, (ftnlen)1); upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); lquery = *lwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { liwmin = 1; lwmin = 1; } else if (wantz) { liwmin = *n * 5 + 3; /* Computing 2nd power */ i__1 = *n; lwmin = *n * 6 + 1 + (i__1 * i__1 << 1); } else { liwmin = 1; lwmin = (*n << 1) + 1; } lopt = lwmin; liopt = liwmin; if (*itype < 1 || *itype > 3) { *info = -1; } else if (! (wantz || lsame_(jobz, (char *)"N", (ftnlen)1, (ftnlen)1))) { *info = -2; } else if (! (upper || lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1))) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldb < max(1,*n)) { *info = -8; } if (*info == 0) { work[1] = (doublereal) lopt; iwork[1] = liopt; if (*lwork < lwmin && ! lquery) { *info = -11; } else if (*liwork < liwmin && ! lquery) { *info = -13; } } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DSYGVD", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a Cholesky factorization of B. */ dpotrf_(uplo, n, &b[b_offset], ldb, info, (ftnlen)1); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem and solve. */ dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info, ( ftnlen)1); dsyevd_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &iwork[ 1], liwork, info, (ftnlen)1, (ftnlen)1); /* Computing MAX */ d__1 = (doublereal) lopt; lopt = (integer) max(d__1,work[1]); /* Computing MAX */ d__1 = (doublereal) liopt, d__2 = (doublereal) iwork[1]; liopt = (integer) max(d__1,d__2); if (wantz && *info == 0) { /* Backtransform eigenvectors to the original problem. */ if (*itype == 1 || *itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */ /* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y */ if (upper) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'T'; } dtrsm_((char *)"Left", uplo, trans, (char *)"Non-unit", n, n, &c_b11, &b[b_offset] , ldb, &a[a_offset], lda, (ftnlen)4, (ftnlen)1, (ftnlen)1, (ftnlen)8); } else if (*itype == 3) { /* For B*A*x=(lambda)*x; */ /* backtransform eigenvectors: x = L*y or U**T*y */ if (upper) { *(unsigned char *)trans = 'T'; } else { *(unsigned char *)trans = 'N'; } dtrmm_((char *)"Left", uplo, trans, (char *)"Non-unit", n, n, &c_b11, &b[b_offset] , ldb, &a[a_offset], lda, (ftnlen)4, (ftnlen)1, (ftnlen)1, (ftnlen)8); } } work[1] = (doublereal) lopt; iwork[1] = liopt; return 0; /* End of DSYGVD */ } /* dsygvd_ */ #ifdef __cplusplus } #endif