/* fortran/zungql.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; /* > \brief \b ZUNGQL */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZUNGQL + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZUNGQL( M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, K, LDA, LWORK, M, N */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZUNGQL generates an M-by-N complex matrix Q with orthonormal columns, */ /* > which is defined as the last N columns of a product of K elementary */ /* > reflectors of order M */ /* > */ /* > Q = H(k) . . . H(2) H(1) */ /* > */ /* > as returned by ZGEQLF. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix Q. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix Q. M >= N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The number of elementary reflectors whose product defines the */ /* > matrix Q. N >= K >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension (LDA,N) */ /* > On entry, the (n-k+i)-th column must contain the vector which */ /* > defines the elementary reflector H(i), for i = 1,2,...,k, as */ /* > returned by ZGEQLF in the last k columns of its array */ /* > argument A. */ /* > On exit, the M-by-N matrix Q. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The first dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[in] TAU */ /* > \verbatim */ /* > TAU is COMPLEX*16 array, dimension (K) */ /* > TAU(i) must contain the scalar factor of the elementary */ /* > reflector H(i), as returned by ZGEQLF. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. LWORK >= max(1,N). */ /* > For optimum performance LWORK >= N*NB, where NB is the */ /* > optimal blocksize. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument has an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16OTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int zungql_(integer *m, integer *n, integer *k, doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex * work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; /* Local variables */ integer i__, j, l, ib, nb, kk, nx, iws, nbmin, iinfo; extern /* Subroutine */ int zung2l_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), xerbla_(char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); integer ldwork; extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen, ftnlen); logical lquery; integer lwkopt; /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0 || *n > *m) { *info = -2; } else if (*k < 0 || *k > *n) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info == 0) { if (*n == 0) { lwkopt = 1; } else { nb = ilaenv_(&c__1, (char *)"ZUNGQL", (char *)" ", m, n, k, &c_n1, (ftnlen)6, ( ftnlen)1); lwkopt = *n * nb; } work[1].r = (doublereal) lwkopt, work[1].i = 0.; if (*lwork < max(1,*n) && ! lquery) { *info = -8; } } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"ZUNGQL", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n <= 0) { return 0; } nbmin = 2; nx = 0; iws = *n; if (nb > 1 && nb < *k) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, (char *)"ZUNGQL", (char *)" ", m, n, k, &c_n1, ( ftnlen)6, (ftnlen)1); nx = max(i__1,i__2); if (nx < *k) { /* Determine if workspace is large enough for blocked code. */ ldwork = *n; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and */ /* determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, (char *)"ZUNGQL", (char *)" ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < *k && nx < *k) { /* Use blocked code after the first block. */ /* The last kk columns are handled by the block method. */ /* Computing MIN */ i__1 = *k, i__2 = (*k - nx + nb - 1) / nb * nb; kk = min(i__1,i__2); /* Set A(m-kk+1:m,1:n-kk) to zero. */ i__1 = *n - kk; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = *m - kk + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; a[i__3].r = 0., a[i__3].i = 0.; /* L10: */ } /* L20: */ } } else { kk = 0; } /* Use unblocked code for the first or only block. */ i__1 = *m - kk; i__2 = *n - kk; i__3 = *k - kk; zung2l_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &work[1], &iinfo) ; if (kk > 0) { /* Use blocked code */ i__1 = *k; i__2 = nb; for (i__ = *k - kk + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = nb, i__4 = *k - i__ + 1; ib = min(i__3,i__4); if (*n - *k + i__ > 1) { /* Form the triangular factor of the block reflector */ /* H = H(i+ib-1) . . . H(i+1) H(i) */ i__3 = *m - *k + i__ + ib - 1; zlarft_((char *)"Backward", (char *)"Columnwise", &i__3, &ib, &a[(*n - *k + i__) * a_dim1 + 1], lda, &tau[i__], &work[1], &ldwork, (ftnlen)8, (ftnlen)10); /* Apply H to A(1:m-k+i+ib-1,1:n-k+i-1) from the left */ i__3 = *m - *k + i__ + ib - 1; i__4 = *n - *k + i__ - 1; zlarfb_((char *)"Left", (char *)"No transpose", (char *)"Backward", (char *)"Columnwise", & i__3, &i__4, &ib, &a[(*n - *k + i__) * a_dim1 + 1], lda, &work[1], &ldwork, &a[a_offset], lda, &work[ib + 1], &ldwork, (ftnlen)4, (ftnlen)12, (ftnlen)8, ( ftnlen)10); } /* Apply H to rows 1:m-k+i+ib-1 of current block */ i__3 = *m - *k + i__ + ib - 1; zung2l_(&i__3, &ib, &ib, &a[(*n - *k + i__) * a_dim1 + 1], lda, & tau[i__], &work[1], &iinfo); /* Set rows m-k+i+ib:m of current block to zero */ i__3 = *n - *k + i__ + ib - 1; for (j = *n - *k + i__; j <= i__3; ++j) { i__4 = *m; for (l = *m - *k + i__ + ib; l <= i__4; ++l) { i__5 = l + j * a_dim1; a[i__5].r = 0., a[i__5].i = 0.; /* L30: */ } /* L40: */ } /* L50: */ } } work[1].r = (doublereal) iws, work[1].i = 0.; return 0; /* End of ZUNGQL */ } /* zungql_ */ #ifdef __cplusplus } #endif