// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author for: Emile Maras (CEA, France) new options for inter-replica forces, first/last replica treatment ------------------------------------------------------------------------- */ #include "fix_neb.h" #include "atom.h" #include "comm.h" #include "compute.h" #include "domain.h" #include "error.h" #include "group.h" #include "math_const.h" #include "memory.h" #include "modify.h" #include "universe.h" #include "update.h" #include #include using namespace LAMMPS_NS; using namespace FixConst; using namespace MathConst; enum{SINGLE_PROC_DIRECT,SINGLE_PROC_MAP,MULTI_PROC}; #define BUFSIZE 8 /* ---------------------------------------------------------------------- */ FixNEB::FixNEB(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg), id_pe(nullptr), pe(nullptr), nlenall(nullptr), xprev(nullptr), xnext(nullptr), fnext(nullptr), springF(nullptr), tangent(nullptr), xsend(nullptr), xrecv(nullptr), fsend(nullptr), frecv(nullptr), tagsend(nullptr), tagrecv(nullptr), xsendall(nullptr), xrecvall(nullptr), fsendall(nullptr), frecvall(nullptr), tagsendall(nullptr), tagrecvall(nullptr), counts(nullptr), displacements(nullptr) { if (narg < 4) error->all(FLERR,"Illegal fix neb command"); kspring = utils::numeric(FLERR,arg[3],false,lmp); if (kspring <= 0.0) error->all(FLERR,"Illegal fix neb command"); // optional params NEBLongRange = false; StandardNEB = true; PerpSpring = FreeEndIni = FreeEndFinal = false; FreeEndFinalWithRespToEIni = FinalAndInterWithRespToEIni = false; kspringPerp = 0.0; kspringIni = 1.0; kspringFinal = 1.0; int iarg = 4; while (iarg < narg) { if (strcmp(arg[iarg],"parallel") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix neb command"); if (strcmp(arg[iarg+1],"ideal") == 0) { NEBLongRange = true; StandardNEB = false; } else if (strcmp(arg[iarg+1],"neigh") == 0) { NEBLongRange = false; StandardNEB = true; } else error->all(FLERR,"Illegal fix neb command"); iarg += 2; } else if (strcmp(arg[iarg],"perp") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix neb command"); PerpSpring = true; kspringPerp = utils::numeric(FLERR,arg[iarg+1],false,lmp); if (kspringPerp == 0.0) PerpSpring = false; if (kspringPerp < 0.0) error->all(FLERR,"Illegal fix neb command"); iarg += 2; } else if (strcmp (arg[iarg],"end") == 0) { if (iarg+3 > narg) error->all(FLERR,"Illegal fix neb command"); if (strcmp(arg[iarg+1],"first") == 0) { FreeEndIni = true; kspringIni = utils::numeric(FLERR,arg[iarg+2],false,lmp); } else if (strcmp(arg[iarg+1],"last") == 0) { FreeEndFinal = true; FinalAndInterWithRespToEIni = false; FreeEndFinalWithRespToEIni = false; kspringFinal = utils::numeric(FLERR,arg[iarg+2],false,lmp); } else if (strcmp(arg[iarg+1],"last/efirst") == 0) { FreeEndFinal = false; FinalAndInterWithRespToEIni = false; FreeEndFinalWithRespToEIni = true; kspringFinal = utils::numeric(FLERR,arg[iarg+2],false,lmp); } else if (strcmp(arg[iarg+1],"last/efirst/middle") == 0) { FreeEndFinal = false; FinalAndInterWithRespToEIni = true; FreeEndFinalWithRespToEIni = true; kspringFinal = utils::numeric(FLERR,arg[iarg+2],false,lmp); } else error->all(FLERR,"Illegal fix neb command"); iarg += 3; } else error->all(FLERR,"Illegal fix neb command"); } // nreplica = number of partitions // ireplica = which world I am in universe // nprocs_universe = # of procs in all replicase // procprev,procnext = root proc in adjacent replicas me = comm->me; nprocs = comm->nprocs; nprocs_universe = universe->nprocs; nreplica = universe->nworlds; ireplica = universe->iworld; if (ireplica > 0) procprev = universe->root_proc[ireplica-1]; else procprev = -1; if (ireplica < nreplica-1) procnext = universe->root_proc[ireplica+1]; else procnext = -1; uworld = universe->uworld; if (NEBLongRange) { int *iroots = new int[nreplica]; MPI_Group uworldgroup,rootgroup; for (int i=0; iroot_proc[i]; MPI_Comm_group(uworld, &uworldgroup); MPI_Group_incl(uworldgroup, nreplica, iroots, &rootgroup); MPI_Comm_create(uworld, rootgroup, &rootworld); if (rootgroup != MPI_GROUP_NULL) MPI_Group_free(&rootgroup); if (uworldgroup != MPI_GROUP_NULL) MPI_Group_free(&uworldgroup); delete [] iroots; } // create a new compute pe style // id = fix-ID + pe, compute group = all id_pe = utils::strdup(std::string(id)+"_pe"); modify->add_compute(std::string(id_pe)+" all pe"); // initialize local storage maxlocal = -1; ntotal = -1; } /* ---------------------------------------------------------------------- */ FixNEB::~FixNEB() { modify->delete_compute(id_pe); delete [] id_pe; memory->destroy(xprev); memory->destroy(xnext); memory->destroy(tangent); memory->destroy(fnext); memory->destroy(springF); memory->destroy(xsend); memory->destroy(xrecv); memory->destroy(fsend); memory->destroy(frecv); memory->destroy(tagsend); memory->destroy(tagrecv); memory->destroy(xsendall); memory->destroy(xrecvall); memory->destroy(fsendall); memory->destroy(frecvall); memory->destroy(tagsendall); memory->destroy(tagrecvall); memory->destroy(counts); memory->destroy(displacements); if (NEBLongRange) { if (rootworld != MPI_COMM_NULL) MPI_Comm_free(&rootworld); memory->destroy(nlenall); } } /* ---------------------------------------------------------------------- */ int FixNEB::setmask() { int mask = 0; mask |= MIN_POST_FORCE; return mask; } /* ---------------------------------------------------------------------- */ void FixNEB::init() { int icompute = modify->find_compute(id_pe); if (icompute < 0) error->all(FLERR,"Potential energy ID for fix neb does not exist"); pe = modify->compute[icompute]; // turn off climbing mode, NEB command turns it on after init() rclimber = -1; // nebatoms = # of atoms in fix group = atoms with inter-replica forces bigint count = group->count(igroup); if (count > MAXSMALLINT) error->all(FLERR,"Too many active NEB atoms"); nebatoms = count; // comm mode for inter-replica exchange of coords if (nreplica == nprocs_universe && nebatoms == atom->natoms && atom->sortfreq == 0) cmode = SINGLE_PROC_DIRECT; else if (nreplica == nprocs_universe) cmode = SINGLE_PROC_MAP; else cmode = MULTI_PROC; // ntotal = total # of atoms in system, NEB atoms or not if (atom->natoms > MAXSMALLINT) error->all(FLERR,"Too many atoms for NEB"); ntotal = atom->natoms; if (atom->nmax > maxlocal) reallocate(); if ((cmode == MULTI_PROC) && (counts == nullptr)) { memory->create(xsendall,ntotal,3,"neb:xsendall"); memory->create(xrecvall,ntotal,3,"neb:xrecvall"); memory->create(fsendall,ntotal,3,"neb:fsendall"); memory->create(frecvall,ntotal,3,"neb:frecvall"); memory->create(tagsendall,ntotal,"neb:tagsendall"); memory->create(tagrecvall,ntotal,"neb:tagrecvall"); memory->create(counts,nprocs,"neb:counts"); memory->create(displacements,nprocs,"neb:displacements"); } } /* ---------------------------------------------------------------------- */ void FixNEB::min_setup(int vflag) { min_post_force(vflag); // trigger potential energy computation on next timestep pe->addstep(update->ntimestep+1); } /* ---------------------------------------------------------------------- */ void FixNEB::min_post_force(int /*vflag*/) { double vprev,vnext; double delxp,delyp,delzp,delxn,delyn,delzn; double vIni=0.0; vprev = vnext = veng = pe->compute_scalar(); if (ireplica < nreplica-1 && me == 0) MPI_Send(&veng,1,MPI_DOUBLE,procnext,0,uworld); if (ireplica > 0 && me == 0) MPI_Recv(&vprev,1,MPI_DOUBLE,procprev,0,uworld,MPI_STATUS_IGNORE); if (ireplica > 0 && me == 0) MPI_Send(&veng,1,MPI_DOUBLE,procprev,0,uworld); if (ireplica < nreplica-1 && me == 0) MPI_Recv(&vnext,1,MPI_DOUBLE,procnext,0,uworld,MPI_STATUS_IGNORE); if (cmode == MULTI_PROC) { MPI_Bcast(&vprev,1,MPI_DOUBLE,0,world); MPI_Bcast(&vnext,1,MPI_DOUBLE,0,world); } if (FreeEndFinal && ireplica == nreplica-1 && (update->ntimestep == 0)) EFinalIni = veng; if (ireplica == 0) vIni=veng; if (FreeEndFinalWithRespToEIni) { if (cmode == SINGLE_PROC_DIRECT || cmode == SINGLE_PROC_MAP) { int procFirst; procFirst=universe->root_proc[0]; MPI_Bcast(&vIni,1,MPI_DOUBLE,procFirst,uworld); } else { if (me == 0) MPI_Bcast(&vIni,1,MPI_DOUBLE,0,rootworld); MPI_Bcast(&vIni,1,MPI_DOUBLE,0,world); } } if (FreeEndIni && ireplica == 0 && (update->ntimestep == 0)) EIniIni = veng; /* if (FreeEndIni && ireplica == 0) { // if (me == 0 ) if (update->ntimestep == 0) { EIniIni = veng; // if (cmode == MULTI_PROC) // MPI_Bcast(&EIniIni,1,MPI_DOUBLE,0,world); } }*/ // communicate atoms to/from adjacent replicas to fill xprev,xnext inter_replica_comm(); // trigger potential energy computation on next timestep pe->addstep(update->ntimestep+1); double **x = atom->x; int *mask = atom->mask; double dot = 0.0; double prefactor = 0.0; double **f = atom->f; int nlocal = atom->nlocal; //calculating separation between images plen = 0.0; nlen = 0.0; double tlen = 0.0; double gradnextlen = 0.0; dotgrad = gradlen = dotpath = dottangrad = 0.0; if (ireplica == nreplica-1) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { delxp = x[i][0] - xprev[i][0]; delyp = x[i][1] - xprev[i][1]; delzp = x[i][2] - xprev[i][2]; domain->minimum_image(delxp,delyp,delzp); plen += delxp*delxp + delyp*delyp + delzp*delzp; dottangrad += delxp* f[i][0]+ delyp*f[i][1]+delzp*f[i][2]; gradlen += f[i][0]*f[i][0] + f[i][1]*f[i][1] + f[i][2]*f[i][2]; if (FreeEndFinal||FreeEndFinalWithRespToEIni) { tangent[i][0]=delxp; tangent[i][1]=delyp; tangent[i][2]=delzp; tlen += tangent[i][0]*tangent[i][0] + tangent[i][1]*tangent[i][1] + tangent[i][2]*tangent[i][2]; dot += f[i][0]*tangent[i][0] + f[i][1]*tangent[i][1] + f[i][2]*tangent[i][2]; } } } else if (ireplica == 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { delxn = xnext[i][0] - x[i][0]; delyn = xnext[i][1] - x[i][1]; delzn = xnext[i][2] - x[i][2]; domain->minimum_image(delxn,delyn,delzn); nlen += delxn*delxn + delyn*delyn + delzn*delzn; gradnextlen += fnext[i][0]*fnext[i][0] + fnext[i][1]*fnext[i][1] +fnext[i][2] * fnext[i][2]; dotgrad += f[i][0]*fnext[i][0] + f[i][1]*fnext[i][1] + f[i][2]*fnext[i][2]; dottangrad += delxn*f[i][0]+ delyn*f[i][1] + delzn*f[i][2]; gradlen += f[i][0]*f[i][0] + f[i][1]*f[i][1] + f[i][2]*f[i][2]; if (FreeEndIni) { tangent[i][0]=delxn; tangent[i][1]=delyn; tangent[i][2]=delzn; tlen += tangent[i][0]*tangent[i][0] + tangent[i][1]*tangent[i][1] + tangent[i][2]*tangent[i][2]; dot += f[i][0]*tangent[i][0] + f[i][1]*tangent[i][1] + f[i][2]*tangent[i][2]; } } } else { // not the first or last replica double vmax = MAX(fabs(vnext-veng),fabs(vprev-veng)); double vmin = MIN(fabs(vnext-veng),fabs(vprev-veng)); for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { delxp = x[i][0] - xprev[i][0]; delyp = x[i][1] - xprev[i][1]; delzp = x[i][2] - xprev[i][2]; domain->minimum_image(delxp,delyp,delzp); plen += delxp*delxp + delyp*delyp + delzp*delzp; delxn = xnext[i][0] - x[i][0]; delyn = xnext[i][1] - x[i][1]; delzn = xnext[i][2] - x[i][2]; domain->minimum_image(delxn,delyn,delzn); if (vnext > veng && veng > vprev) { tangent[i][0] = delxn; tangent[i][1] = delyn; tangent[i][2] = delzn; } else if (vnext < veng && veng < vprev) { tangent[i][0] = delxp; tangent[i][1] = delyp; tangent[i][2] = delzp; } else { if (vnext > vprev) { tangent[i][0] = vmax*delxn + vmin*delxp; tangent[i][1] = vmax*delyn + vmin*delyp; tangent[i][2] = vmax*delzn + vmin*delzp; } else if (vnext < vprev) { tangent[i][0] = vmin*delxn + vmax*delxp; tangent[i][1] = vmin*delyn + vmax*delyp; tangent[i][2] = vmin*delzn + vmax*delzp; } else { // vnext == vprev, e.g. for potentials that do not compute an energy tangent[i][0] = delxn + delxp; tangent[i][1] = delyn + delyp; tangent[i][2] = delzn + delzp; } } nlen += delxn*delxn + delyn*delyn + delzn*delzn; tlen += tangent[i][0]*tangent[i][0] + tangent[i][1]*tangent[i][1] + tangent[i][2]*tangent[i][2]; gradlen += f[i][0]*f[i][0] + f[i][1]*f[i][1] + f[i][2]*f[i][2]; dotpath += delxp*delxn + delyp*delyn + delzp*delzn; dottangrad += tangent[i][0]*f[i][0] + tangent[i][1]*f[i][1] + tangent[i][2]*f[i][2]; gradnextlen += fnext[i][0]*fnext[i][0] + fnext[i][1]*fnext[i][1] +fnext[i][2] * fnext[i][2]; dotgrad += f[i][0]*fnext[i][0] + f[i][1]*fnext[i][1] + f[i][2]*fnext[i][2]; springF[i][0] = kspringPerp*(delxn-delxp); springF[i][1] = kspringPerp*(delyn-delyp); springF[i][2] = kspringPerp*(delzn-delzp); } } double bufin[BUFSIZE], bufout[BUFSIZE]; bufin[0] = nlen; bufin[1] = plen; bufin[2] = tlen; bufin[3] = gradlen; bufin[4] = gradnextlen; bufin[5] = dotpath; bufin[6] = dottangrad; bufin[7] = dotgrad; MPI_Allreduce(bufin,bufout,BUFSIZE,MPI_DOUBLE,MPI_SUM,world); nlen = sqrt(bufout[0]); plen = sqrt(bufout[1]); tlen = sqrt(bufout[2]); gradlen = sqrt(bufout[3]); gradnextlen = sqrt(bufout[4]); dotpath = bufout[5]; dottangrad = bufout[6]; dotgrad = bufout[7]; // normalize tangent vector if (tlen > 0.0) { double tleninv = 1.0/tlen; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { tangent[i][0] *= tleninv; tangent[i][1] *= tleninv; tangent[i][2] *= tleninv; } } // first or last replica has no change to forces, just return if (ireplica > 0 && ireplica < nreplica-1) dottangrad = dottangrad/(tlen*gradlen); if (ireplica == 0) dottangrad = dottangrad/(nlen*gradlen); if (ireplica == nreplica-1) dottangrad = dottangrad/(plen*gradlen); if (ireplica < nreplica-1) dotgrad = dotgrad /(gradlen*gradnextlen); if (FreeEndIni && ireplica == 0) { if (tlen > 0.0) { double dotall; MPI_Allreduce(&dot,&dotall,1,MPI_DOUBLE,MPI_SUM,world); dot=dotall/tlen; if (dot<0) prefactor = -dot - kspringIni*(veng-EIniIni); else prefactor = -dot + kspringIni*(veng-EIniIni); for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { f[i][0] += prefactor *tangent[i][0]; f[i][1] += prefactor *tangent[i][1]; f[i][2] += prefactor *tangent[i][2]; } } } if (FreeEndFinal && ireplica == nreplica -1) { if (tlen > 0.0) { double dotall; MPI_Allreduce(&dot,&dotall,1,MPI_DOUBLE,MPI_SUM,world); dot=dotall/tlen; if (veng 0.0) { double dotall; MPI_Allreduce(&dot,&dotall,1,MPI_DOUBLE,MPI_SUM,world); dot=dotall/tlen; if (veng0) { for (int i = 0; i < rclimber; i++) lenuntilClimber += nlenall[i]; double meanDistBeforeClimber = lenuntilClimber/rclimber; double meanDistAfterClimber = (lentot-lenuntilClimber)/(nreplica-rclimber-1); if (ireplicanmax > maxlocal) reallocate(); double **x = atom->x; double **f = atom->f; tagint *tag = atom->tag; int *mask = atom->mask; int nlocal = atom->nlocal; // ----------------------------------------------------- // 3 cases: two for single proc per replica // one for multiple procs per replica // ----------------------------------------------------- // single proc per replica // all atoms are NEB atoms and no atom sorting // direct comm of x -> xprev and x -> xnext if (cmode == SINGLE_PROC_DIRECT) { if (ireplica > 0) MPI_Irecv(xprev[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld,&request); if (ireplica < nreplica-1) MPI_Send(x[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld); if (ireplica > 0) MPI_Wait(&request,MPI_STATUS_IGNORE); if (ireplica < nreplica-1) MPI_Irecv(xnext[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld,&request); if (ireplica > 0) MPI_Send(x[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld); if (ireplica < nreplica-1) MPI_Wait(&request,MPI_STATUS_IGNORE); if (ireplica < nreplica-1) MPI_Irecv(fnext[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld,&request); if (ireplica > 0) MPI_Send(f[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld); if (ireplica < nreplica-1) MPI_Wait(&request,MPI_STATUS_IGNORE); return; } // single proc per replica // but only some atoms are NEB atoms or atom sorting is enabled // send atom IDs and coords of only NEB atoms to prev/next proc // recv procs use atom->map() to match received coords to owned atoms if (cmode == SINGLE_PROC_MAP) { m = 0; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { tagsend[m] = tag[i]; xsend[m][0] = x[i][0]; xsend[m][1] = x[i][1]; xsend[m][2] = x[i][2]; fsend[m][0] = f[i][0]; fsend[m][1] = f[i][1]; fsend[m][2] = f[i][2]; m++; } if (ireplica > 0) { MPI_Irecv(xrecv[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld,&requests[0]); MPI_Irecv(tagrecv,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld,&requests[1]); } if (ireplica < nreplica-1) { MPI_Send(xsend[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld); MPI_Send(tagsend,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld); } if (ireplica > 0) { MPI_Waitall(2,requests,statuses); for (i = 0; i < nebatoms; i++) { m = atom->map(tagrecv[i]); xprev[m][0] = xrecv[i][0]; xprev[m][1] = xrecv[i][1]; xprev[m][2] = xrecv[i][2]; } } if (ireplica < nreplica-1) { MPI_Irecv(xrecv[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]); MPI_Irecv(frecv[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]); MPI_Irecv(tagrecv,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld,&requests[1]); } if (ireplica > 0) { MPI_Send(xsend[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld); MPI_Send(fsend[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld); MPI_Send(tagsend,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld); } if (ireplica < nreplica-1) { MPI_Waitall(2,requests,statuses); for (i = 0; i < nebatoms; i++) { m = atom->map(tagrecv[i]); xnext[m][0] = xrecv[i][0]; xnext[m][1] = xrecv[i][1]; xnext[m][2] = xrecv[i][2]; fnext[m][0] = frecv[i][0]; fnext[m][1] = frecv[i][1]; fnext[m][2] = frecv[i][2]; } } return; } // multiple procs per replica // MPI_Gather all coords and atom IDs to root proc of each replica // send to root of adjacent replicas // bcast within each replica // each proc extracts info for atoms it owns via atom->map() m = 0; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { tagsend[m] = tag[i]; xsend[m][0] = x[i][0]; xsend[m][1] = x[i][1]; xsend[m][2] = x[i][2]; fsend[m][0] = f[i][0]; fsend[m][1] = f[i][1]; fsend[m][2] = f[i][2]; m++; } MPI_Gather(&m,1,MPI_INT,counts,1,MPI_INT,0,world); displacements[0] = 0; for (i = 0; i < nprocs-1; i++) displacements[i+1] = displacements[i] + counts[i]; MPI_Gatherv(tagsend,m,MPI_LMP_TAGINT, tagsendall,counts,displacements,MPI_LMP_TAGINT,0,world); for (i = 0; i < nprocs; i++) counts[i] *= 3; for (i = 0; i < nprocs-1; i++) displacements[i+1] = displacements[i] + counts[i]; if (xsend) { MPI_Gatherv(xsend[0],3*m,MPI_DOUBLE, xsendall[0],counts,displacements,MPI_DOUBLE,0,world); MPI_Gatherv(fsend[0],3*m,MPI_DOUBLE, fsendall[0],counts,displacements,MPI_DOUBLE,0,world); } else { MPI_Gatherv(nullptr,3*m,MPI_DOUBLE, xsendall[0],counts,displacements,MPI_DOUBLE,0,world); MPI_Gatherv(nullptr,3*m,MPI_DOUBLE, fsendall[0],counts,displacements,MPI_DOUBLE,0,world); } if (ireplica > 0 && me == 0) { MPI_Irecv(xrecvall[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld,&requests[0]); MPI_Irecv(tagrecvall,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld, &requests[1]); } if (ireplica < nreplica-1 && me == 0) { MPI_Send(xsendall[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld); MPI_Send(tagsendall,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld); } if (ireplica > 0) { if (me == 0) MPI_Waitall(2,requests,statuses); MPI_Bcast(tagrecvall,nebatoms,MPI_INT,0,world); MPI_Bcast(xrecvall[0],3*nebatoms,MPI_DOUBLE,0,world); for (i = 0; i < nebatoms; i++) { m = atom->map(tagrecvall[i]); if (m < 0 || m >= nlocal) continue; xprev[m][0] = xrecvall[i][0]; xprev[m][1] = xrecvall[i][1]; xprev[m][2] = xrecvall[i][2]; } } if (ireplica < nreplica-1 && me == 0) { MPI_Irecv(xrecvall[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]); MPI_Irecv(frecvall[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]); MPI_Irecv(tagrecvall,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld, &requests[1]); } if (ireplica > 0 && me == 0) { MPI_Send(xsendall[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld); MPI_Send(fsendall[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld); MPI_Send(tagsendall,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld); } if (ireplica < nreplica-1) { if (me == 0) MPI_Waitall(2,requests,statuses); MPI_Bcast(tagrecvall,nebatoms,MPI_INT,0,world); MPI_Bcast(xrecvall[0],3*nebatoms,MPI_DOUBLE,0,world); MPI_Bcast(frecvall[0],3*nebatoms,MPI_DOUBLE,0,world); for (i = 0; i < nebatoms; i++) { m = atom->map(tagrecvall[i]); if (m < 0 || m >= nlocal) continue; xnext[m][0] = xrecvall[i][0]; xnext[m][1] = xrecvall[i][1]; xnext[m][2] = xrecvall[i][2]; fnext[m][0] = frecvall[i][0]; fnext[m][1] = frecvall[i][1]; fnext[m][2] = frecvall[i][2]; } } } /* ---------------------------------------------------------------------- reallocate xprev,xnext,tangent arrays if necessary reallocate communication arrays if necessary ------------------------------------------------------------------------- */ void FixNEB::reallocate() { maxlocal = atom->nmax; memory->destroy(xprev); memory->destroy(xnext); memory->destroy(tangent); memory->destroy(fnext); memory->destroy(springF); memory->create(xprev,maxlocal,3,"neb:xprev"); memory->create(xnext,maxlocal,3,"neb:xnext"); memory->create(tangent,maxlocal,3,"neb:tangent"); memory->create(fnext,maxlocal,3,"neb:fnext"); memory->create(springF,maxlocal,3,"neb:springF"); if (cmode != SINGLE_PROC_DIRECT) { memory->destroy(xsend); memory->destroy(fsend); memory->destroy(xrecv); memory->destroy(frecv); memory->destroy(tagsend); memory->destroy(tagrecv); memory->create(xsend,maxlocal,3,"neb:xsend"); memory->create(fsend,maxlocal,3,"neb:fsend"); memory->create(xrecv,maxlocal,3,"neb:xrecv"); memory->create(frecv,maxlocal,3,"neb:frecv"); memory->create(tagsend,maxlocal,"neb:tagsend"); memory->create(tagrecv,maxlocal,"neb:tagrecv"); } if (NEBLongRange) { memory->destroy(nlenall); memory->create(nlenall,nreplica,"neb:nlenall"); } }