/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "angle_class2_omp.h" #include "atom.h" #include "comm.h" #include "force.h" #include "neighbor.h" #include "domain.h" #include "math_const.h" #include #include "suffix.h" using namespace LAMMPS_NS; using namespace MathConst; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleClass2OMP::AngleClass2OMP(class LAMMPS *lmp) : AngleClass2(lmp), ThrOMP(lmp,THR_ANGLE) { suffix_flag |= Suffix::OMP; } /* ---------------------------------------------------------------------- */ void AngleClass2OMP::compute(int eflag, int vflag) { if (eflag || vflag) { ev_setup(eflag,vflag); } else evflag = 0; const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = neighbor->nanglelist; #if defined(_OPENMP) #pragma omp parallel default(none) shared(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); thr->timer(Timer::START); ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr); if (inum > 0) { if (evflag) { if (eflag) { if (force->newton_bond) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (force->newton_bond) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (force->newton_bond) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } } thr->timer(Timer::BOND); reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void AngleClass2OMP::eval(int nfrom, int nto, ThrData * const thr) { int i1,i2,i3,n,type; double delx1,dely1,delz1,delx2,dely2,delz2; double eangle,f1[3],f3[3]; double dtheta,dtheta2,dtheta3,dtheta4,de_angle; double dr1,dr2,tk1,tk2,aa1,aa2,aa11,aa12,aa21,aa22; double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22,b1,b2; double vx11,vx12,vy11,vy12,vz11,vz12,vx21,vx22,vy21,vy22,vz21,vz22; const dbl3_t * _noalias const x = (dbl3_t *) atom->x[0]; dbl3_t * _noalias const f = (dbl3_t *) thr->get_f()[0]; const int4_t * _noalias const anglelist = (int4_t *) neighbor->anglelist[0]; const int nlocal = atom->nlocal; eangle = 0.0; for (n = nfrom; n < nto; n++) { i1 = anglelist[n].a; i2 = anglelist[n].b; i3 = anglelist[n].c; type = anglelist[n].t; // 1st bond delx1 = x[i1].x - x[i2].x; dely1 = x[i1].y - x[i2].y; delz1 = x[i1].z - x[i2].z; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3].x - x[i2].x; dely2 = x[i3].y - x[i2].y; delz2 = x[i3].z - x[i2].z; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; // force & energy for angle term dtheta = acos(c) - theta0[type]; dtheta2 = dtheta*dtheta; dtheta3 = dtheta2*dtheta; dtheta4 = dtheta3*dtheta; de_angle = 2.0*k2[type]*dtheta + 3.0*k3[type]*dtheta2 + 4.0*k4[type]*dtheta3; a = -de_angle*s; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; if (EFLAG) eangle = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4; // force & energy for bond-bond term dr1 = r1 - bb_r1[type]; dr2 = r2 - bb_r2[type]; tk1 = bb_k[type] * dr1; tk2 = bb_k[type] * dr2; f1[0] -= delx1*tk2/r1; f1[1] -= dely1*tk2/r1; f1[2] -= delz1*tk2/r1; f3[0] -= delx2*tk1/r2; f3[1] -= dely2*tk1/r2; f3[2] -= delz2*tk1/r2; if (EFLAG) eangle += bb_k[type]*dr1*dr2; // force & energy for bond-angle term aa1 = s * dr1 * ba_k1[type]; aa2 = s * dr2 * ba_k2[type]; aa11 = aa1 * c / rsq1; aa12 = -aa1 / (r1 * r2); aa21 = aa2 * c / rsq1; aa22 = -aa2 / (r1 * r2); vx11 = (aa11 * delx1) + (aa12 * delx2); vx12 = (aa21 * delx1) + (aa22 * delx2); vy11 = (aa11 * dely1) + (aa12 * dely2); vy12 = (aa21 * dely1) + (aa22 * dely2); vz11 = (aa11 * delz1) + (aa12 * delz2); vz12 = (aa21 * delz1) + (aa22 * delz2); aa11 = aa1 * c / rsq2; aa21 = aa2 * c / rsq2; vx21 = (aa11 * delx2) + (aa12 * delx1); vx22 = (aa21 * delx2) + (aa22 * delx1); vy21 = (aa11 * dely2) + (aa12 * dely1); vy22 = (aa21 * dely2) + (aa22 * dely1); vz21 = (aa11 * delz2) + (aa12 * delz1); vz22 = (aa21 * delz2) + (aa22 * delz1); b1 = ba_k1[type] * dtheta / r1; b2 = ba_k2[type] * dtheta / r2; f1[0] -= vx11 + b1*delx1 + vx12; f1[1] -= vy11 + b1*dely1 + vy12; f1[2] -= vz11 + b1*delz1 + vz12; f3[0] -= vx21 + b2*delx2 + vx22; f3[1] -= vy21 + b2*dely2 + vy22; f3[2] -= vz21 + b2*delz2 + vz22; if (EFLAG) eangle += ba_k1[type]*dr1*dtheta + ba_k2[type]*dr2*dtheta; // apply force to each of 3 atoms if (NEWTON_BOND || i1 < nlocal) { f[i1].x += f1[0]; f[i1].y += f1[1]; f[i1].z += f1[2]; } if (NEWTON_BOND || i2 < nlocal) { f[i2].x -= f1[0] + f3[0]; f[i2].y -= f1[1] + f3[1]; f[i2].z -= f1[2] + f3[2]; } if (NEWTON_BOND || i3 < nlocal) { f[i3].x += f3[0]; f[i3].y += f3[1]; f[i3].z += f3[2]; } if (EVFLAG) ev_tally_thr(this,i1,i2,i3,nlocal,NEWTON_BOND,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2,thr); } }