/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Mike Brown (SNL) ------------------------------------------------------------------------- */ #include "mpi.h" #include "compute_temp_asphere.h" #include "math_extra.h" #include "atom.h" #include "force.h" #include "domain.h" #include "modify.h" #include "fix.h" #include "group.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeTempAsphere::ComputeTempAsphere(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg) { if (narg != 3) error->all("Illegal compute temp command"); if (!atom->quat_flag || !atom->angmom_flag) error->all("Compute temp/asphere requires atom attributes quat, angmom"); scalar_flag = vector_flag = 1; size_vector = 6; extensive = 0; tempflag = 1; vector = new double[6]; inertia = memory->create_2d_double_array(atom->ntypes+1,3,"fix_temp_sphere:inertia"); } /* ---------------------------------------------------------------------- */ ComputeTempAsphere::~ComputeTempAsphere() { delete [] vector; memory->destroy_2d_double_array(inertia); } /* ---------------------------------------------------------------------- */ void ComputeTempAsphere::init() { fix_dof = 0; for (int i = 0; i < modify->nfix; i++) fix_dof += modify->fix[i]->dof(igroup); recount(); calculate_inertia(); } /* ---------------------------------------------------------------------- */ void ComputeTempAsphere::recount() { double natoms = group->count(igroup); dof = domain->dimension * natoms; dof -= extra_dof + fix_dof; // add rotational degrees of freedom // 0 for sphere, 2 for uniaxial, 3 for biaxial double **shape = atom->shape; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; int itype; int rot_dof = 0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { itype = type[i]; if (shape[itype][0] == shape[itype][1] && shape[itype][1] == shape[itype][2]) continue; else if (shape[itype][0] == shape[itype][1] || shape[itype][1] == shape[itype][2] || shape[itype][0] == shape[itype][2]) rot_dof += 2; else rot_dof += 3; } int rot_total; MPI_Allreduce(&rot_dof,&rot_total,1,MPI_INT,MPI_SUM,world); dof += rot_total; if (dof > 0) tfactor = force->mvv2e / (dof * force->boltz); else tfactor = 0.0; } /* ---------------------------------------------------------------------- */ double ComputeTempAsphere::compute_scalar() { double **v = atom->v; double **quat = atom->quat; double **angmom = atom->angmom; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; int itype; double wbody[3]; double rot[3][3]; double t = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { // translational kinetic energy itype = type[i]; t += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * mass[itype]; // wbody = angular velocity in body frame MathExtra::quat_to_mat(quat[i],rot); MathExtra::transpose_times_column3(rot,angmom[i],wbody); wbody[0] /= inertia[itype][0]; wbody[1] /= inertia[itype][1]; wbody[2] /= inertia[itype][2]; // rotational kinetic energy t += inertia[itype][0]*wbody[0]*wbody[0]+ inertia[itype][1]*wbody[1]*wbody[1]+ inertia[itype][2]*wbody[2]*wbody[2]; } MPI_Allreduce(&t,&scalar,1,MPI_DOUBLE,MPI_SUM,world); if (dynamic) recount(); scalar *= tfactor; return scalar; } /* ---------------------------------------------------------------------- */ void ComputeTempAsphere::compute_vector() { int i; double **v = atom->v; double **quat = atom->quat; double **angmom = atom->angmom; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; int itype; double wbody[3]; double rot[3][3]; double massone,t[6]; for (i = 0; i < 6; i++) t[i] = 0.0; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { // translational kinetic energy itype = type[i]; massone = mass[itype]; t[0] += massone * v[i][0]*v[i][0]; t[1] += massone * v[i][1]*v[i][1]; t[2] += massone * v[i][2]*v[i][2]; t[3] += massone * v[i][0]*v[i][1]; t[4] += massone * v[i][0]*v[i][2]; t[5] += massone * v[i][1]*v[i][2]; // wbody = angular velocity in body frame MathExtra::quat_to_mat(quat[i],rot); MathExtra::transpose_times_column3(rot,angmom[i],wbody); wbody[0] /= inertia[itype][0]; wbody[1] /= inertia[itype][1]; wbody[2] /= inertia[itype][2]; // rotational kinetic energy t[0] += inertia[itype][0]*wbody[0]*wbody[0]; t[1] += inertia[itype][1]*wbody[1]*wbody[1]; t[2] += inertia[itype][2]*wbody[2]*wbody[2]; t[3] += inertia[itype][0]*wbody[0]*wbody[1]; t[4] += inertia[itype][1]*wbody[0]*wbody[2]; t[5] += inertia[itype][2]*wbody[1]*wbody[2]; } MPI_Allreduce(t,vector,6,MPI_DOUBLE,MPI_SUM,world); for (i = 0; i < 6; i++) vector[i] *= force->mvv2e; } /* ---------------------------------------------------------------------- principal moments of inertia for ellipsoids ------------------------------------------------------------------------- */ void ComputeTempAsphere::calculate_inertia() { double *mass = atom->mass; double **shape = atom->shape; for (int i = 1; i <= atom->ntypes; i++) { inertia[i][0] = mass[i] * (shape[i][1]*shape[i][1]+shape[i][2]*shape[i][2]) / 5.0; inertia[i][1] = mass[i] * (shape[i][0]*shape[i][0]+shape[i][2]*shape[i][2]) / 5.0; inertia[i][2] = mass[i] * (shape[i][0]*shape[i][0]+shape[i][1]*shape[i][1]) / 5.0; } }