/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Carolyn Phillips (U Mich), reservoir energy tally Aidan Thompson (SNL) GJF formulation ------------------------------------------------------------------------- */ #include #include #include #include #include "fix_langevin.h" #include "math_extra.h" #include "atom.h" #include "atom_vec_ellipsoid.h" #include "force.h" #include "update.h" #include "modify.h" #include "compute.h" #include "domain.h" #include "region.h" #include "respa.h" #include "comm.h" #include "input.h" #include "variable.h" #include "random_mars.h" #include "memory.h" #include "error.h" #include "group.h" using namespace LAMMPS_NS; using namespace FixConst; enum{NOBIAS,BIAS}; enum{CONSTANT,EQUAL,ATOM}; #define SINERTIA 0.4 // moment of inertia prefactor for sphere #define EINERTIA 0.2 // moment of inertia prefactor for ellipsoid /* ---------------------------------------------------------------------- */ FixLangevin::FixLangevin(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg), gjfflag(0), gfactor1(NULL), gfactor2(NULL), ratio(NULL), tstr(NULL), flangevin(NULL), tforce(NULL), franprev(NULL), id_temp(NULL), random(NULL) { if (narg < 7) error->all(FLERR,"Illegal fix langevin command"); dynamic_group_allow = 1; scalar_flag = 1; global_freq = 1; extscalar = 1; nevery = 1; if (strstr(arg[3],"v_") == arg[3]) { int n = strlen(&arg[3][2]) + 1; tstr = new char[n]; strcpy(tstr,&arg[3][2]); } else { t_start = force->numeric(FLERR,arg[3]); t_target = t_start; tstyle = CONSTANT; } t_stop = force->numeric(FLERR,arg[4]); t_period = force->numeric(FLERR,arg[5]); seed = force->inumeric(FLERR,arg[6]); if (t_period <= 0.0) error->all(FLERR,"Fix langevin period must be > 0.0"); if (seed <= 0) error->all(FLERR,"Illegal fix langevin command"); // initialize Marsaglia RNG with processor-unique seed random = new RanMars(lmp,seed + comm->me); // allocate per-type arrays for force prefactors gfactor1 = new double[atom->ntypes+1]; gfactor2 = new double[atom->ntypes+1]; ratio = new double[atom->ntypes+1]; // optional args for (int i = 1; i <= atom->ntypes; i++) ratio[i] = 1.0; ascale = 0.0; gjfflag = 0; oflag = 0; tallyflag = 0; zeroflag = 0; int iarg = 7; while (iarg < narg) { if (strcmp(arg[iarg],"angmom") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix langevin command"); if (strcmp(arg[iarg+1],"no") == 0) ascale = 0.0; else ascale = force->numeric(FLERR,arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"gjf") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix langevin command"); if (strcmp(arg[iarg+1],"no") == 0) gjfflag = 0; else if (strcmp(arg[iarg+1],"yes") == 0) gjfflag = 1; else error->all(FLERR,"Illegal fix langevin command"); iarg += 2; } else if (strcmp(arg[iarg],"omega") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix langevin command"); if (strcmp(arg[iarg+1],"no") == 0) oflag = 0; else if (strcmp(arg[iarg+1],"yes") == 0) oflag = 1; else error->all(FLERR,"Illegal fix langevin command"); iarg += 2; } else if (strcmp(arg[iarg],"scale") == 0) { if (iarg+3 > narg) error->all(FLERR,"Illegal fix langevin command"); int itype = force->inumeric(FLERR,arg[iarg+1]); double scale = force->numeric(FLERR,arg[iarg+2]); if (itype <= 0 || itype > atom->ntypes) error->all(FLERR,"Illegal fix langevin command"); ratio[itype] = scale; iarg += 3; } else if (strcmp(arg[iarg],"tally") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix langevin command"); if (strcmp(arg[iarg+1],"no") == 0) tallyflag = 0; else if (strcmp(arg[iarg+1],"yes") == 0) tallyflag = 1; else error->all(FLERR,"Illegal fix langevin command"); iarg += 2; } else if (strcmp(arg[iarg],"zero") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix langevin command"); if (strcmp(arg[iarg+1],"no") == 0) zeroflag = 0; else if (strcmp(arg[iarg+1],"yes") == 0) zeroflag = 1; else error->all(FLERR,"Illegal fix langevin command"); iarg += 2; } else error->all(FLERR,"Illegal fix langevin command"); } // set temperature = NULL, user can override via fix_modify if wants bias id_temp = NULL; temperature = NULL; energy = 0.0; // flangevin is unallocated until first call to setup() // compute_scalar checks for this and returns 0.0 // if flangevin_allocated is not set flangevin = NULL; flangevin_allocated = 0; franprev = NULL; tforce = NULL; maxatom1 = maxatom2 = 0; // setup atom-based array for franprev // register with Atom class // no need to set peratom_flag, b/c data is for internal use only if (gjfflag) { nvalues = 3; grow_arrays(atom->nmax); atom->add_callback(0); // initialize franprev to zero int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) { franprev[i][0] = 0.0; franprev[i][1] = 0.0; franprev[i][2] = 0.0; } } if (tallyflag && zeroflag && comm->me == 0) error->warning(FLERR,"Energy tally does not account for 'zero yes'"); } /* ---------------------------------------------------------------------- */ FixLangevin::~FixLangevin() { delete random; delete [] tstr; delete [] gfactor1; delete [] gfactor2; delete [] ratio; delete [] id_temp; memory->destroy(flangevin); memory->destroy(tforce); if (gjfflag) { memory->destroy(franprev); atom->delete_callback(id,0); } } /* ---------------------------------------------------------------------- */ int FixLangevin::setmask() { int mask = 0; mask |= POST_FORCE; mask |= POST_FORCE_RESPA; mask |= END_OF_STEP; mask |= THERMO_ENERGY; return mask; } /* ---------------------------------------------------------------------- */ void FixLangevin::init() { if (oflag && !atom->sphere_flag) error->all(FLERR,"Fix langevin omega requires atom style sphere"); if (ascale && !atom->ellipsoid_flag) error->all(FLERR,"Fix langevin angmom requires atom style ellipsoid"); // check variable if (tstr) { tvar = input->variable->find(tstr); if (tvar < 0) error->all(FLERR,"Variable name for fix langevin does not exist"); if (input->variable->equalstyle(tvar)) tstyle = EQUAL; else if (input->variable->atomstyle(tvar)) tstyle = ATOM; else error->all(FLERR,"Variable for fix langevin is invalid style"); } // if oflag or ascale set, check that all group particles are finite-size if (oflag) { double *radius = atom->radius; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) if (radius[i] == 0.0) error->one(FLERR,"Fix langevin omega requires extended particles"); } if (ascale) { avec = (AtomVecEllipsoid *) atom->style_match("ellipsoid"); if (!avec) error->all(FLERR,"Fix langevin angmom requires atom style ellipsoid"); int *ellipsoid = atom->ellipsoid; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) if (ellipsoid[i] < 0) error->one(FLERR,"Fix langevin angmom requires extended particles"); } // set force prefactors if (!atom->rmass) { for (int i = 1; i <= atom->ntypes; i++) { gfactor1[i] = -atom->mass[i] / t_period / force->ftm2v; gfactor2[i] = sqrt(atom->mass[i]) * sqrt(24.0*force->boltz/t_period/update->dt/force->mvv2e) / force->ftm2v; gfactor1[i] *= 1.0/ratio[i]; gfactor2[i] *= 1.0/sqrt(ratio[i]); } } if (temperature && temperature->tempbias) tbiasflag = BIAS; else tbiasflag = NOBIAS; if (strstr(update->integrate_style,"respa")) nlevels_respa = ((Respa *) update->integrate)->nlevels; if (gjfflag) gjffac = 1.0/(1.0+update->dt/2.0/t_period); } /* ---------------------------------------------------------------------- */ void FixLangevin::setup(int vflag) { if (strstr(update->integrate_style,"verlet")) post_force(vflag); else { ((Respa *) update->integrate)->copy_flevel_f(nlevels_respa-1); post_force_respa(vflag,nlevels_respa-1,0); ((Respa *) update->integrate)->copy_f_flevel(nlevels_respa-1); } } /* ---------------------------------------------------------------------- */ void FixLangevin::post_force(int vflag) { double *rmass = atom->rmass; // enumerate all 2^6 possibilities for template parameters // this avoids testing them inside inner loop: // TSTYLEATOM, GJF, TALLY, BIAS, RMASS, ZERO #ifdef TEMPLATED_FIX_LANGEVIN if (tstyle == ATOM) if (gjfflag) if (tallyflag) if (tbiasflag == BIAS) if (rmass) if (zeroflag) post_force_templated<1,1,1,1,1,1>(); else post_force_templated<1,1,1,1,1,0>(); else if (zeroflag) post_force_templated<1,1,1,1,0,1>(); else post_force_templated<1,1,1,1,0,0>(); else if (rmass) if (zeroflag) post_force_templated<1,1,1,0,1,1>(); else post_force_templated<1,1,1,0,1,0>(); else if (zeroflag) post_force_templated<1,1,1,0,0,1>(); else post_force_templated<1,1,1,0,0,0>(); else if (tbiasflag == BIAS) if (rmass) if (zeroflag) post_force_templated<1,1,0,1,1,1>(); else post_force_templated<1,1,0,1,1,0>(); else if (zeroflag) post_force_templated<1,1,0,1,0,1>(); else post_force_templated<1,1,0,1,0,0>(); else if (rmass) if (zeroflag) post_force_templated<1,1,0,0,1,1>(); else post_force_templated<1,1,0,0,1,0>(); else if (zeroflag) post_force_templated<1,1,0,0,0,1>(); else post_force_templated<1,1,0,0,0,0>(); else if (tallyflag) if (tbiasflag == BIAS) if (rmass) if (zeroflag) post_force_templated<1,0,1,1,1,1>(); else post_force_templated<1,0,1,1,1,0>(); else if (zeroflag) post_force_templated<1,0,1,1,0,1>(); else post_force_templated<1,0,1,1,0,0>(); else if (rmass) if (zeroflag) post_force_templated<1,0,1,0,1,1>(); else post_force_templated<1,0,1,0,1,0>(); else if (zeroflag) post_force_templated<1,0,1,0,0,1>(); else post_force_templated<1,0,1,0,0,0>(); else if (tbiasflag == BIAS) if (rmass) if (zeroflag) post_force_templated<1,0,0,1,1,1>(); else post_force_templated<1,0,0,1,1,0>(); else if (zeroflag) post_force_templated<1,0,0,1,0,1>(); else post_force_templated<1,0,0,1,0,0>(); else if (rmass) if (zeroflag) post_force_templated<1,0,0,0,1,1>(); else post_force_templated<1,0,0,0,1,0>(); else if (zeroflag) post_force_templated<1,0,0,0,0,1>(); else post_force_templated<1,0,0,0,0,0>(); else if (gjfflag) if (tallyflag) if (tbiasflag == BIAS) if (rmass) if (zeroflag) post_force_templated<0,1,1,1,1,1>(); else post_force_templated<0,1,1,1,1,0>(); else if (zeroflag) post_force_templated<0,1,1,1,0,1>(); else post_force_templated<0,1,1,1,0,0>(); else if (rmass) if (zeroflag) post_force_templated<0,1,1,0,1,1>(); else post_force_templated<0,1,1,0,1,0>(); else if (zeroflag) post_force_templated<0,1,1,0,0,1>(); else post_force_templated<0,1,1,0,0,0>(); else if (tbiasflag == BIAS) if (rmass) if (zeroflag) post_force_templated<0,1,0,1,1,1>(); else post_force_templated<0,1,0,1,1,0>(); else if (zeroflag) post_force_templated<0,1,0,1,0,1>(); else post_force_templated<0,1,0,1,0,0>(); else if (rmass) if (zeroflag) post_force_templated<0,1,0,0,1,1>(); else post_force_templated<0,1,0,0,1,0>(); else if (zeroflag) post_force_templated<0,1,0,0,0,1>(); else post_force_templated<0,1,0,0,0,0>(); else if (tallyflag) if (tbiasflag == BIAS) if (rmass) if (zeroflag) post_force_templated<0,0,1,1,1,1>(); else post_force_templated<0,0,1,1,1,0>(); else if (zeroflag) post_force_templated<0,0,1,1,0,1>(); else post_force_templated<0,0,1,1,0,0>(); else if (rmass) if (zeroflag) post_force_templated<0,0,1,0,1,1>(); else post_force_templated<0,0,1,0,1,0>(); else if (zeroflag) post_force_templated<0,0,1,0,0,1>(); else post_force_templated<0,0,1,0,0,0>(); else if (tbiasflag == BIAS) if (rmass) if (zeroflag) post_force_templated<0,0,0,1,1,1>(); else post_force_templated<0,0,0,1,1,0>(); else if (zeroflag) post_force_templated<0,0,0,1,0,1>(); else post_force_templated<0,0,0,1,0,0>(); else if (rmass) if (zeroflag) post_force_templated<0,0,0,0,1,1>(); else post_force_templated<0,0,0,0,1,0>(); else if (zeroflag) post_force_templated<0,0,0,0,0,1>(); else post_force_templated<0,0,0,0,0,0>(); #else post_force_untemplated(int(tstyle==ATOM), gjfflag, tallyflag, int(tbiasflag==BIAS), int(rmass!=NULL), zeroflag); #endif } /* ---------------------------------------------------------------------- */ void FixLangevin::post_force_respa(int vflag, int ilevel, int iloop) { if (ilevel == nlevels_respa-1) post_force(vflag); } /* ---------------------------------------------------------------------- modify forces using one of the many Langevin styles ------------------------------------------------------------------------- */ #ifdef TEMPLATED_FIX_LANGEVIN template < int Tp_TSTYLEATOM, int Tp_GJF, int Tp_TALLY, int Tp_BIAS, int Tp_RMASS, int Tp_ZERO > void FixLangevin::post_force_templated() #else void FixLangevin::post_force_untemplated (int Tp_TSTYLEATOM, int Tp_GJF, int Tp_TALLY, int Tp_BIAS, int Tp_RMASS, int Tp_ZERO) #endif { double gamma1,gamma2; double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; // apply damping and thermostat to atoms in group // for Tp_TSTYLEATOM: // use per-atom per-coord target temperature // for Tp_GJF: // use Gronbech-Jensen/Farago algorithm // else use regular algorithm // for Tp_TALLY: // store drag plus random forces in flangevin[nlocal][3] // for Tp_BIAS: // calculate temperature since some computes require temp // computed on current nlocal atoms to remove bias // test v = 0 since some computes mask non-participating atoms via v = 0 // and added force has extra term not multiplied by v = 0 // for Tp_RMASS: // use per-atom masses // else use per-type masses // for Tp_ZERO: // sum random force over all atoms in group // subtract sum/count from each atom in group double fdrag[3],fran[3],fsum[3],fsumall[3]; bigint count; double fswap; double boltz = force->boltz; double dt = update->dt; double mvv2e = force->mvv2e; double ftm2v = force->ftm2v; compute_target(); if (Tp_ZERO) { fsum[0] = fsum[1] = fsum[2] = 0.0; count = group->count(igroup); if (count == 0) error->all(FLERR,"Cannot zero Langevin force of 0 atoms"); } // reallocate flangevin if necessary if (Tp_TALLY) { if (atom->nmax > maxatom1) { memory->destroy(flangevin); maxatom1 = atom->nmax; memory->create(flangevin,maxatom1,3,"langevin:flangevin"); } flangevin_allocated = 1; } if (Tp_BIAS) temperature->compute_scalar(); for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { if (Tp_TSTYLEATOM) tsqrt = sqrt(tforce[i]); if (Tp_RMASS) { gamma1 = -rmass[i] / t_period / ftm2v; gamma2 = sqrt(rmass[i]) * sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v; gamma1 *= 1.0/ratio[type[i]]; gamma2 *= 1.0/sqrt(ratio[type[i]]) * tsqrt; } else { gamma1 = gfactor1[type[i]]; gamma2 = gfactor2[type[i]] * tsqrt; } fran[0] = gamma2*(random->uniform()-0.5); fran[1] = gamma2*(random->uniform()-0.5); fran[2] = gamma2*(random->uniform()-0.5); if (Tp_BIAS) { temperature->remove_bias(i,v[i]); fdrag[0] = gamma1*v[i][0]; fdrag[1] = gamma1*v[i][1]; fdrag[2] = gamma1*v[i][2]; if (v[i][0] == 0.0) fran[0] = 0.0; if (v[i][1] == 0.0) fran[1] = 0.0; if (v[i][2] == 0.0) fran[2] = 0.0; temperature->restore_bias(i,v[i]); } else { fdrag[0] = gamma1*v[i][0]; fdrag[1] = gamma1*v[i][1]; fdrag[2] = gamma1*v[i][2]; } if (Tp_GJF) { fswap = 0.5*(fran[0]+franprev[i][0]); franprev[i][0] = fran[0]; fran[0] = fswap; fswap = 0.5*(fran[1]+franprev[i][1]); franprev[i][1] = fran[1]; fran[1] = fswap; fswap = 0.5*(fran[2]+franprev[i][2]); franprev[i][2] = fran[2]; fran[2] = fswap; fdrag[0] *= gjffac; fdrag[1] *= gjffac; fdrag[2] *= gjffac; fran[0] *= gjffac; fran[1] *= gjffac; fran[2] *= gjffac; f[i][0] *= gjffac; f[i][1] *= gjffac; f[i][2] *= gjffac; } f[i][0] += fdrag[0] + fran[0]; f[i][1] += fdrag[1] + fran[1]; f[i][2] += fdrag[2] + fran[2]; if (Tp_TALLY) { flangevin[i][0] = fdrag[0] + fran[0]; flangevin[i][1] = fdrag[1] + fran[1]; flangevin[i][2] = fdrag[2] + fran[2]; } if (Tp_ZERO) { fsum[0] += fran[0]; fsum[1] += fran[1]; fsum[2] += fran[2]; } } } // set total force to zero if (Tp_ZERO) { MPI_Allreduce(fsum,fsumall,3,MPI_DOUBLE,MPI_SUM,world); fsumall[0] /= count; fsumall[1] /= count; fsumall[2] /= count; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { f[i][0] -= fsumall[0]; f[i][1] -= fsumall[1]; f[i][2] -= fsumall[2]; } } } // thermostat omega and angmom if (oflag) omega_thermostat(); if (ascale) angmom_thermostat(); } /* ---------------------------------------------------------------------- set current t_target and t_sqrt ------------------------------------------------------------------------- */ void FixLangevin::compute_target() { int *mask = atom->mask; int nlocal = atom->nlocal; double delta = update->ntimestep - update->beginstep; if (delta != 0.0) delta /= update->endstep - update->beginstep; // if variable temp, evaluate variable, wrap with clear/add // reallocate tforce array if necessary if (tstyle == CONSTANT) { t_target = t_start + delta * (t_stop-t_start); tsqrt = sqrt(t_target); } else { modify->clearstep_compute(); if (tstyle == EQUAL) { t_target = input->variable->compute_equal(tvar); if (t_target < 0.0) error->one(FLERR,"Fix langevin variable returned negative temperature"); tsqrt = sqrt(t_target); } else { if (atom->nmax > maxatom2) { maxatom2 = atom->nmax; memory->destroy(tforce); memory->create(tforce,maxatom2,"langevin:tforce"); } input->variable->compute_atom(tvar,igroup,tforce,1,0); for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) if (tforce[i] < 0.0) error->one(FLERR, "Fix langevin variable returned negative temperature"); } modify->addstep_compute(update->ntimestep + 1); } } /* ---------------------------------------------------------------------- thermostat rotational dof via omega ------------------------------------------------------------------------- */ void FixLangevin::omega_thermostat() { double gamma1,gamma2; double boltz = force->boltz; double dt = update->dt; double mvv2e = force->mvv2e; double ftm2v = force->ftm2v; double **torque = atom->torque; double **omega = atom->omega; double *radius = atom->radius; double *rmass = atom->rmass; int *mask = atom->mask; int *type = atom->type; int nlocal = atom->nlocal; // rescale gamma1/gamma2 by 10/3 & sqrt(10/3) for spherical particles // does not affect rotational thermosatting // gives correct rotational diffusivity behavior double tendivthree = 10.0/3.0; double tran[3]; double inertiaone; for (int i = 0; i < nlocal; i++) { if ((mask[i] & groupbit) && (radius[i] > 0.0)) { inertiaone = SINERTIA*radius[i]*radius[i]*rmass[i]; if (tstyle == ATOM) tsqrt = sqrt(tforce[i]); gamma1 = -tendivthree*inertiaone / t_period / ftm2v; gamma2 = sqrt(inertiaone) * sqrt(80.0*boltz/t_period/dt/mvv2e) / ftm2v; gamma1 *= 1.0/ratio[type[i]]; gamma2 *= 1.0/sqrt(ratio[type[i]]) * tsqrt; tran[0] = gamma2*(random->uniform()-0.5); tran[1] = gamma2*(random->uniform()-0.5); tran[2] = gamma2*(random->uniform()-0.5); torque[i][0] += gamma1*omega[i][0] + tran[0]; torque[i][1] += gamma1*omega[i][1] + tran[1]; torque[i][2] += gamma1*omega[i][2] + tran[2]; } } } /* ---------------------------------------------------------------------- thermostat rotational dof via angmom ------------------------------------------------------------------------- */ void FixLangevin::angmom_thermostat() { double gamma1,gamma2; double boltz = force->boltz; double dt = update->dt; double mvv2e = force->mvv2e; double ftm2v = force->ftm2v; AtomVecEllipsoid::Bonus *bonus = avec->bonus; double **torque = atom->torque; double **angmom = atom->angmom; double *rmass = atom->rmass; int *ellipsoid = atom->ellipsoid; int *mask = atom->mask; int *type = atom->type; int nlocal = atom->nlocal; // rescale gamma1/gamma2 by ascale for aspherical particles // does not affect rotational thermosatting // gives correct rotational diffusivity behavior if (nearly) spherical // any value will be incorrect for rotational diffusivity if aspherical double inertia[3],omega[3],tran[3]; double *shape,*quat; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { shape = bonus[ellipsoid[i]].shape; inertia[0] = EINERTIA*rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]); inertia[1] = EINERTIA*rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]); inertia[2] = EINERTIA*rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]); quat = bonus[ellipsoid[i]].quat; MathExtra::mq_to_omega(angmom[i],quat,inertia,omega); if (tstyle == ATOM) tsqrt = sqrt(tforce[i]); gamma1 = -ascale / t_period / ftm2v; gamma2 = sqrt(ascale*24.0*boltz/t_period/dt/mvv2e) / ftm2v; gamma1 *= 1.0/ratio[type[i]]; gamma2 *= 1.0/sqrt(ratio[type[i]]) * tsqrt; tran[0] = sqrt(inertia[0])*gamma2*(random->uniform()-0.5); tran[1] = sqrt(inertia[1])*gamma2*(random->uniform()-0.5); tran[2] = sqrt(inertia[2])*gamma2*(random->uniform()-0.5); torque[i][0] += inertia[0]*gamma1*omega[0] + tran[0]; torque[i][1] += inertia[1]*gamma1*omega[1] + tran[1]; torque[i][2] += inertia[2]*gamma1*omega[2] + tran[2]; } } } /* ---------------------------------------------------------------------- tally energy transfer to thermal reservoir ------------------------------------------------------------------------- */ void FixLangevin::end_of_step() { if (!tallyflag) return; double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; energy_onestep = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) energy_onestep += flangevin[i][0]*v[i][0] + flangevin[i][1]*v[i][1] + flangevin[i][2]*v[i][2]; energy += energy_onestep*update->dt; } /* ---------------------------------------------------------------------- */ void FixLangevin::reset_target(double t_new) { t_target = t_start = t_stop = t_new; } /* ---------------------------------------------------------------------- */ void FixLangevin::reset_dt() { if (atom->mass) { for (int i = 1; i <= atom->ntypes; i++) { gfactor2[i] = sqrt(atom->mass[i]) * sqrt(24.0*force->boltz/t_period/update->dt/force->mvv2e) / force->ftm2v; gfactor2[i] *= 1.0/sqrt(ratio[i]); } } } /* ---------------------------------------------------------------------- */ int FixLangevin::modify_param(int narg, char **arg) { if (strcmp(arg[0],"temp") == 0) { if (narg < 2) error->all(FLERR,"Illegal fix_modify command"); delete [] id_temp; int n = strlen(arg[1]) + 1; id_temp = new char[n]; strcpy(id_temp,arg[1]); int icompute = modify->find_compute(id_temp); if (icompute < 0) error->all(FLERR,"Could not find fix_modify temperature ID"); temperature = modify->compute[icompute]; if (temperature->tempflag == 0) error->all(FLERR, "Fix_modify temperature ID does not compute temperature"); if (temperature->igroup != igroup && comm->me == 0) error->warning(FLERR,"Group for fix_modify temp != fix group"); return 2; } return 0; } /* ---------------------------------------------------------------------- */ double FixLangevin::compute_scalar() { if (!tallyflag || !flangevin_allocated) return 0.0; // capture the very first energy transfer to thermal reservoir double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; if (update->ntimestep == update->beginstep) { energy_onestep = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) energy_onestep += flangevin[i][0]*v[i][0] + flangevin[i][1]*v[i][1] + flangevin[i][2]*v[i][2]; energy = 0.5*energy_onestep*update->dt; } // convert midstep energy back to previous fullstep energy double energy_me = energy - 0.5*energy_onestep*update->dt; double energy_all; MPI_Allreduce(&energy_me,&energy_all,1,MPI_DOUBLE,MPI_SUM,world); return -energy_all; } /* ---------------------------------------------------------------------- extract thermostat properties ------------------------------------------------------------------------- */ void *FixLangevin::extract(const char *str, int &dim) { dim = 0; if (strcmp(str,"t_target") == 0) { return &t_target; } return NULL; } /* ---------------------------------------------------------------------- memory usage of tally array ------------------------------------------------------------------------- */ double FixLangevin::memory_usage() { double bytes = 0.0; if (gjfflag) bytes += atom->nmax*3 * sizeof(double); if (tallyflag) bytes += atom->nmax*3 * sizeof(double); if (tforce) bytes += atom->nmax * sizeof(double); return bytes; } /* ---------------------------------------------------------------------- allocate atom-based array for franprev ------------------------------------------------------------------------- */ void FixLangevin::grow_arrays(int nmax) { memory->grow(franprev,nmax,3,"fix_langevin:franprev"); } /* ---------------------------------------------------------------------- copy values within local atom-based array ------------------------------------------------------------------------- */ void FixLangevin::copy_arrays(int i, int j, int delflag) { for (int m = 0; m < nvalues; m++) franprev[j][m] = franprev[i][m]; } /* ---------------------------------------------------------------------- pack values in local atom-based array for exchange with another proc ------------------------------------------------------------------------- */ int FixLangevin::pack_exchange(int i, double *buf) { for (int m = 0; m < nvalues; m++) buf[m] = franprev[i][m]; return nvalues; } /* ---------------------------------------------------------------------- unpack values in local atom-based array from exchange with another proc ------------------------------------------------------------------------- */ int FixLangevin::unpack_exchange(int nlocal, double *buf) { for (int m = 0; m < nvalues; m++) franprev[nlocal][m] = buf[m]; return nvalues; }