/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Ludwig Ahrens-Iwers (TUHH), Shern Tee (UQ), Robert Meißner (TUHH) ------------------------------------------------------------------------- */ #include "fix_electrode_thermo.h" #include "atom.h" #include "error.h" #include "fix_electrode_conp.h" #include "force.h" #include "input.h" #include "random_mars.h" #include "update.h" #include "variable.h" using namespace LAMMPS_NS; #define NUM_GROUPS 2 #define SMALL 0.00001 enum { CONST, EQUAL }; /* ----------------------------------------------------------------------- */ // 0 1 2 3 4 // fix fxupdate group1 electrode/thermo pot1 eta couple group2 pot2 FixElectrodeThermo::FixElectrodeThermo(LAMMPS *lmp, int narg, char **arg) : FixElectrodeConp(lmp, narg, arg) { if (num_of_groups != NUM_GROUPS) error->all(FLERR, "Number of electrodes != two in electrode/thermo"); if (group_psi_var_styles[0] != group_psi_var_styles[1]) error->all(FLERR, "Potentials in electrode/thermo must have same style"); if (symm) error->all(FLERR, "Keyword symm on not allowed in electrode/thermo"); if (thermo_time < SMALL) error->all(FLERR, "Keyword temp not set or zero in electrode/thermo"); thermo_random = new RanMars(lmp, thermo_init); if (group_psi_var_styles[0] == CONST) delta_psi_0 = group_psi[1] - group_psi[0]; } /* ----------------------------------------------------------------------- */ FixElectrodeThermo::~FixElectrodeThermo() { delete thermo_random; } /* ----------------------------------------------------------------------- */ void FixElectrodeThermo::compute_macro_matrices() { FixElectrodeConp::compute_macro_matrices(); vac_cap = (macro_capacitance[0][0] * macro_capacitance[1][1] - macro_capacitance[0][1] * macro_capacitance[0][1]) / (macro_capacitance[0][0] + macro_capacitance[1][1] + 2 * macro_capacitance[0][1]); } /* ----------------------------------------------------------------------- */ void FixElectrodeThermo::pre_update() { // total electrode charges after last step, required for update psi int const nlocal = atom->nlocal; int *mask = atom->mask; double *q = atom->q; for (int g = 0; g < NUM_GROUPS; g++) { group_q_old[g] = 0.; for (int i = 0; i < nlocal; i++) { if (mask[i] & group_bits[g]) { group_q_old[g] += q[i]; } } } MPI_Allreduce(MPI_IN_PLACE, &group_q_old, NUM_GROUPS, MPI_DOUBLE, MPI_SUM, world); } /* ----------------------------------------------------------------------- */ void FixElectrodeThermo::update_psi() { double const dt = update->dt; // group_q_eff is charge that corresponds to potential after previous step double group_q_eff[NUM_GROUPS] = {0., 0.}; for (int g = 0; g < NUM_GROUPS; g++) { group_q_eff[g] = group_q_old[g] - sb_charges[g]; } double group_psi_old[NUM_GROUPS] = {0., 0.}; for (int g = 0; g < NUM_GROUPS; g++) { double vtmp = 0; for (int h = 0; h < NUM_GROUPS; h++) { vtmp += macro_elastance[g][h] * group_q_eff[h]; } group_psi_old[g] = vtmp; } double const delta_psi = group_psi_old[1] - group_psi_old[0]; // target potential difference from input parameters if (group_psi_var_styles[0] != CONST) { delta_psi_0 = input->variable->compute_equal(group_psi_var_ids[1]) - input->variable->compute_equal(group_psi_var_ids[0]); } double delta_charge = 0.5 * (group_q_old[1] - group_q_old[0]) - vac_cap * (delta_psi - delta_psi_0) * (1. - exp(-dt / thermo_time)); delta_charge += sqrt((thermo_temp * vac_cap) * (1. - exp(-2. * dt / thermo_time))) * thermo_random->gaussian(); double const group_remainder_q[NUM_GROUPS] = {-delta_charge - sb_charges[0], delta_charge - sb_charges[1]}; for (int g = 0; g < NUM_GROUPS; g++) { double vtmp = 0; for (int h = 0; h < NUM_GROUPS; h++) { vtmp += macro_elastance[g][h] * group_remainder_q[h]; } group_psi[g] = vtmp; } }