/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Trung Dac Nguyen (ORNL) ------------------------------------------------------------------------- */ #include "pair_colloid_gpu.h" #include "atom.h" #include "domain.h" #include "error.h" #include "force.h" #include "gpu_extra.h" #include "memory.h" #include "neigh_list.h" #include "neighbor.h" #include "suffix.h" #include using namespace LAMMPS_NS; // External functions from cuda library for atom decomposition int colloid_gpu_init(const int ntypes, double **cutsq, double **host_lj1, double **host_lj2, double **host_lj3, double **host_lj4, double **offset, double *special_lj, double **host_a12, double **host_a1, double **host_a2, double **host_d1, double **host_d2, double **host_sigma3, double **host_sigma6, int **host_form, const int nlocal, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen); void colloid_gpu_clear(); int **colloid_gpu_compute_n(const int ago, const int inum, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial, tagint **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success); void colloid_gpu_compute(const int ago, const int inum, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success); double colloid_gpu_bytes(); /* ---------------------------------------------------------------------- */ PairColloidGPU::PairColloidGPU(LAMMPS *lmp) : PairColloid(lmp), gpu_mode(GPU_FORCE) { respa_enable = 0; reinitflag = 0; cpu_time = 0.0; suffix_flag |= Suffix::GPU; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairColloidGPU::~PairColloidGPU() { colloid_gpu_clear(); } /* ---------------------------------------------------------------------- */ void PairColloidGPU::compute(int eflag, int vflag) { ev_init(eflag, vflag); int nall = atom->nlocal + atom->nghost; int inum, host_start; bool success = true; int *ilist, *numneigh, **firstneigh; if (gpu_mode != GPU_FORCE) { double sublo[3], subhi[3]; if (domain->triclinic == 0) { sublo[0] = domain->sublo[0]; sublo[1] = domain->sublo[1]; sublo[2] = domain->sublo[2]; subhi[0] = domain->subhi[0]; subhi[1] = domain->subhi[1]; subhi[2] = domain->subhi[2]; } else { domain->bbox(domain->sublo_lamda, domain->subhi_lamda, sublo, subhi); } inum = atom->nlocal; firstneigh = colloid_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, sublo, subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success); } else { inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; colloid_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success); } if (!success) error->one(FLERR, "Insufficient memory on accelerator"); if (atom->molecular != Atom::ATOMIC && neighbor->ago == 0) neighbor->build_topology(); if (host_start < inum) { cpu_time = platform::walltime(); cpu_compute(host_start, inum, eflag, vflag, ilist, numneigh, firstneigh); cpu_time = platform::walltime() - cpu_time; } } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairColloidGPU::init_style() { // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double cut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { cut = init_one(i, j); cut *= cut; if (cut > maxcut) maxcut = cut; cutsq[i][j] = cutsq[j][i] = cut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; int **_form = nullptr; int n = atom->ntypes; memory->create(_form, n + 1, n + 1, "colloid/gpu:_form"); for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (form[i][j] == SMALL_SMALL) _form[i][j] = 0; else if (form[i][j] == SMALL_LARGE) _form[i][j] = 1; else if (form[i][j] == LARGE_LARGE) _form[i][j] = 2; } } int maxspecial = 0; if (atom->molecular != Atom::ATOMIC) maxspecial = atom->maxspecial; int mnf = 5e-2 * neighbor->oneatom; int success = colloid_gpu_init(atom->ntypes + 1, cutsq, lj1, lj2, lj3, lj4, offset, force->special_lj, a12, a1, a2, d1, d2, sigma3, sigma6, _form, atom->nlocal, atom->nlocal + atom->nghost, mnf, maxspecial, cell_size, gpu_mode, screen); memory->destroy(_form); GPU_EXTRA::check_flag(success, error, world); if (gpu_mode == GPU_FORCE) neighbor->add_request(this, NeighConst::REQ_FULL); } /* ---------------------------------------------------------------------- */ double PairColloidGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + colloid_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairColloidGPU::cpu_compute(int start, int inum, int eflag, int /* vflag */, int *ilist, int *numneigh, int **firstneigh) { int i, j, ii, jj, jnum, itype, jtype; double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair; double r, rsq, r2inv, r6inv, forcelj, factor_lj; double c1, c2, fR, dUR, dUA; double K[9], h[4], g[4]; int *jlist; double **x = atom->x; double **f = atom->f; int *type = atom->type; double *special_lj = force->special_lj; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; jtype = type[j]; if (rsq >= cutsq[itype][jtype]) continue; switch (form[itype][jtype]) { case SMALL_SMALL: r2inv = 1.0 / rsq; r6inv = r2inv * r2inv * r2inv; forcelj = r6inv * (lj1[itype][jtype] * r6inv - lj2[itype][jtype]); fpair = factor_lj * forcelj * r2inv; if (eflag) evdwl = r6inv * (r6inv * lj3[itype][jtype] - lj4[itype][jtype]) - offset[itype][jtype]; break; case SMALL_LARGE: c2 = a2[itype][jtype]; K[1] = c2 * c2; K[2] = rsq; K[0] = K[1] - rsq; K[4] = rsq * rsq; K[3] = K[1] - K[2]; K[3] *= K[3] * K[3]; K[6] = K[3] * K[3]; fR = sigma3[itype][jtype] * a12[itype][jtype] * c2 * K[1] / K[3]; fpair = 4.0 / 15.0 * fR * factor_lj * (2.0 * (K[1] + K[2]) * (K[1] * (5.0 * K[1] + 22.0 * K[2]) + 5.0 * K[4]) * sigma6[itype][jtype] / K[6] - 5.0) / K[0]; if (eflag) evdwl = 2.0 / 9.0 * fR * (1.0 - (K[1] * (K[1] * (K[1] / 3.0 + 3.0 * K[2]) + 4.2 * K[4]) + K[2] * K[4]) * sigma6[itype][jtype] / K[6]) - offset[itype][jtype]; if (rsq <= K[1]) error->one(FLERR, "Overlapping small/large in pair colloid"); break; case LARGE_LARGE: r = sqrt(rsq); c1 = a1[itype][jtype]; c2 = a2[itype][jtype]; K[0] = c1 * c2; K[1] = c1 + c2; K[2] = c1 - c2; K[3] = K[1] + r; K[4] = K[1] - r; K[5] = K[2] + r; K[6] = K[2] - r; K[7] = 1.0 / (K[3] * K[4]); K[8] = 1.0 / (K[5] * K[6]); g[0] = pow(K[3], -7.0); g[1] = pow(K[4], -7.0); g[2] = pow(K[5], -7.0); g[3] = pow(K[6], -7.0); h[0] = ((K[3] + 5.0 * K[1]) * K[3] + 30.0 * K[0]) * g[0]; h[1] = ((K[4] + 5.0 * K[1]) * K[4] + 30.0 * K[0]) * g[1]; h[2] = ((K[5] + 5.0 * K[2]) * K[5] - 30.0 * K[0]) * g[2]; h[3] = ((K[6] + 5.0 * K[2]) * K[6] - 30.0 * K[0]) * g[3]; g[0] *= 42.0 * K[0] / K[3] + 6.0 * K[1] + K[3]; g[1] *= 42.0 * K[0] / K[4] + 6.0 * K[1] + K[4]; g[2] *= -42.0 * K[0] / K[5] + 6.0 * K[2] + K[5]; g[3] *= -42.0 * K[0] / K[6] + 6.0 * K[2] + K[6]; fR = a12[itype][jtype] * sigma6[itype][jtype] / r / 37800.0; evdwl = fR * (h[0] - h[1] - h[2] + h[3]); dUR = evdwl / r + 5.0 * fR * (g[0] + g[1] - g[2] - g[3]); dUA = -a12[itype][jtype] / 3.0 * r * ((2.0 * K[0] * K[7] + 1.0) * K[7] + (2.0 * K[0] * K[8] - 1.0) * K[8]); fpair = factor_lj * (dUR + dUA) / r; if (eflag) evdwl += a12[itype][jtype] / 6.0 * (2.0 * K[0] * (K[7] + K[8]) - log(K[8] / K[7])) - offset[itype][jtype]; if (r <= K[1]) error->one(FLERR, "Overlapping large/large in pair colloid"); break; } if (eflag) evdwl *= factor_lj; f[i][0] += delx * fpair; f[i][1] += dely * fpair; f[i][2] += delz * fpair; if (evflag) ev_tally_full(i, evdwl, 0.0, fpair, delx, dely, delz); } } }