/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_temp_sphere.h" #include "atom.h" #include "domain.h" #include "error.h" #include "force.h" #include "group.h" #include "modify.h" #include "update.h" #include using namespace LAMMPS_NS; enum { ROTATE, ALL }; static constexpr double INERTIA = 0.4; // moment of inertia prefactor for sphere /* ---------------------------------------------------------------------- */ ComputeTempSphere::ComputeTempSphere(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), id_bias(nullptr) { if (narg < 3) utils::missing_cmd_args(FLERR, "compute temp/sphere", error); scalar_flag = vector_flag = 1; size_vector = 6; extscalar = 0; extvector = 1; tempflag = 1; tempbias = 0; mode = ALL; int iarg = 3; while (iarg < narg) { if (strcmp(arg[iarg], "bias") == 0) { if (iarg + 2 > narg) utils::missing_cmd_args(FLERR, "compute temp/sphere bias", error); tempbias = 1; id_bias = utils::strdup(arg[iarg + 1]); iarg += 2; } else if (strcmp(arg[iarg], "dof") == 0) { if (iarg + 2 > narg) utils::missing_cmd_args(FLERR, "compute temp/sphere dof", error); if (strcmp(arg[iarg + 1], "rotate") == 0) mode = ROTATE; else if (strcmp(arg[iarg + 1], "all") == 0) mode = ALL; else error->all(FLERR, "Unknown compute temp/sphere dof keyword {}", arg[iarg + 1]); iarg += 2; } else error->all(FLERR, "Unknown compute temp/sphere keyword {}", arg[iarg]); } // when computing only the rotational temperature, // do not remove DOFs for translation as set by default if (mode == ROTATE) extra_dof = 0; vector = new double[size_vector]; // error checks if (!atom->omega_flag) error->all(FLERR, "Compute temp/sphere requires atom attribute omega"); if (!atom->radius_flag) error->all(FLERR, "Compute temp/sphere requires atom attribute radius"); } /* ---------------------------------------------------------------------- */ ComputeTempSphere::~ComputeTempSphere() { delete[] id_bias; delete[] vector; } /* ---------------------------------------------------------------------- */ void ComputeTempSphere::init() { if (tempbias) { tbias = modify->get_compute_by_id(id_bias); if (!tbias) error->all(FLERR, "Could not find compute {} for temperature bias", id_bias); if (tbias->tempflag == 0) error->all(FLERR, "Bias compute does not calculate temperature"); if (tbias->tempbias == 0) error->all(FLERR, "Bias compute does not calculate a velocity bias"); if (tbias->igroup != igroup) error->all(FLERR, "Bias compute group does not match compute group"); if (strcmp(tbias->style, "temp/region") == 0) tempbias = 2; else tempbias = 1; // init and setup bias compute because // this compute's setup()->dof_compute() may be called first tbias->init(); tbias->setup(); } } /* ---------------------------------------------------------------------- */ void ComputeTempSphere::setup() { dynamic = 0; if (dynamic_user || group->dynamic[igroup]) dynamic = 1; dof_compute(); } /* ---------------------------------------------------------------------- */ void ComputeTempSphere::dof_compute() { int count, count_all; adjust_dof_fix(); natoms_temp = group->count(igroup); // 6 or 3 dof for extended/point particles for 3d // 3 or 2 dof for extended/point particles for 2d // which dof are included also depends on mode // assume full rotation of extended particles // user should correct this via compute_modify if needed double *radius = atom->radius; const int *mask = atom->mask; const int nlocal = atom->nlocal; count = 0; if (domain->dimension == 3) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { if (radius[i] == 0.0) { if (mode == ALL) count += 3; } else { if (mode == ALL) count += 6; else count += 3; } } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { if (radius[i] == 0.0) { if (mode == ALL) count += 2; } else { if (mode == ALL) count += 3; else count += 1; } } } MPI_Allreduce(&count, &count_all, 1, MPI_INT, MPI_SUM, world); dof = count_all; // additional adjustments to dof if (tempbias == 1) { if (mode == ALL) dof -= tbias->dof_remove(-1) * natoms_temp; } else if (tempbias == 2) { tbias->dof_remove_pre(); count = 0; if (domain->dimension == 3) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { if (tbias->dof_remove(i)) { if (radius[i] == 0.0) { if (mode == ALL) count += 3; } else { if (mode == ALL) count += 6; else count += 3; } } } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { if (tbias->dof_remove(i)) { if (radius[i] == 0.0) { if (mode == ALL) count += 2; } else { if (mode == ALL) count += 3; else count += 1; } } } } MPI_Allreduce(&count, &count_all, 1, MPI_INT, MPI_SUM, world); dof -= count_all; } dof -= extra_dof + fix_dof; if (dof > 0) tfactor = force->mvv2e / (dof * force->boltz); else tfactor = 0.0; } /* ---------------------------------------------------------------------- */ double ComputeTempSphere::compute_scalar() { invoked_scalar = update->ntimestep; if (tempbias) { if (tbias->invoked_scalar != update->ntimestep) tbias->compute_scalar(); tbias->remove_bias_all(); } double **v = atom->v; double **omega = atom->omega; double *radius = atom->radius; double *rmass = atom->rmass; int *mask = atom->mask; int nlocal = atom->nlocal; // point particles will not contribute rotation due to radius = 0 double t = 0.0; // clang-format off if (mode == ALL) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { t += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * rmass[i]; t += (omega[i][0]*omega[i][0] + omega[i][1]*omega[i][1] + omega[i][2]*omega[i][2]) * INERTIA*rmass[i]*radius[i]*radius[i]; } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) t += (omega[i][0]*omega[i][0] + omega[i][1]*omega[i][1] + omega[i][2]*omega[i][2]) * INERTIA*rmass[i]*radius[i]*radius[i]; } // clang-format on if (tempbias) tbias->restore_bias_all(); MPI_Allreduce(&t, &scalar, 1, MPI_DOUBLE, MPI_SUM, world); if (dynamic || tempbias == 2) dof_compute(); if (dof < 0.0 && natoms_temp > 0.0) error->all(FLERR, "Temperature compute degrees of freedom < 0"); scalar *= tfactor; return scalar; } /* ---------------------------------------------------------------------- */ void ComputeTempSphere::compute_vector() { invoked_vector = update->ntimestep; if (tempbias) { if (tbias->invoked_vector != update->ntimestep) tbias->compute_vector(); tbias->remove_bias_all(); } double **v = atom->v; double **omega = atom->omega; double *rmass = atom->rmass; double *radius = atom->radius; int *mask = atom->mask; int nlocal = atom->nlocal; // point particles will not contribute rotation due to radius = 0 double massone, inertiaone, t[6]; for (auto &ti : t) ti = 0.0; if (mode == ALL) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { massone = rmass[i]; t[0] += massone * v[i][0] * v[i][0]; t[1] += massone * v[i][1] * v[i][1]; t[2] += massone * v[i][2] * v[i][2]; t[3] += massone * v[i][0] * v[i][1]; t[4] += massone * v[i][0] * v[i][2]; t[5] += massone * v[i][1] * v[i][2]; inertiaone = INERTIA * rmass[i] * radius[i] * radius[i]; t[0] += inertiaone * omega[i][0] * omega[i][0]; t[1] += inertiaone * omega[i][1] * omega[i][1]; t[2] += inertiaone * omega[i][2] * omega[i][2]; t[3] += inertiaone * omega[i][0] * omega[i][1]; t[4] += inertiaone * omega[i][0] * omega[i][2]; t[5] += inertiaone * omega[i][1] * omega[i][2]; } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { inertiaone = INERTIA * rmass[i] * radius[i] * radius[i]; t[0] += inertiaone * omega[i][0] * omega[i][0]; t[1] += inertiaone * omega[i][1] * omega[i][1]; t[2] += inertiaone * omega[i][2] * omega[i][2]; t[3] += inertiaone * omega[i][0] * omega[i][1]; t[4] += inertiaone * omega[i][0] * omega[i][2]; t[5] += inertiaone * omega[i][1] * omega[i][2]; } } if (tempbias) tbias->restore_bias_all(); MPI_Allreduce(t, vector, 6, MPI_DOUBLE, MPI_SUM, world); for (int i = 0; i < 6; i++) vector[i] *= force->mvv2e; } /* ---------------------------------------------------------------------- remove velocity bias from atom I to leave thermal velocity ------------------------------------------------------------------------- */ void ComputeTempSphere::remove_bias(int i, double *v) { tbias->remove_bias(i, v); } /* ---------------------------------------------------------------------- remove velocity bias from atom I to leave thermal velocity ------------------------------------------------------------------------- */ void ComputeTempSphere::remove_bias_thr(int i, double *v, double *b) { tbias->remove_bias_thr(i, v, b); } /* ---------------------------------------------------------------------- add back in velocity bias to atom I removed by remove_bias() assume remove_bias() was previously called ------------------------------------------------------------------------- */ void ComputeTempSphere::restore_bias(int i, double *v) { tbias->restore_bias(i, v); } /* ---------------------------------------------------------------------- add back in velocity bias to atom I removed by remove_bias_thr() assume remove_bias_thr() was previously called with the same buffer b ------------------------------------------------------------------------- */ void ComputeTempSphere::restore_bias_thr(int i, double *v, double *b) { tbias->restore_bias_thr(i, v, b); }