/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Trung Dac Nguyen (ORNL) ------------------------------------------------------------------------- */ #include "pair_table_gpu.h" #include "atom.h" #include "domain.h" #include "error.h" #include "force.h" #include "gpu_extra.h" #include "memory.h" #include "neigh_list.h" #include "neighbor.h" #include "suffix.h" #include using namespace LAMMPS_NS; // External functions from cuda library for atom decomposition int table_gpu_init(const int ntypes, double **cutsq, double ***host_table_coeffs, double **host_table_data, double *special_lj, const int nlocal, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen, int tabstyle, int ntables, int tablength); void table_gpu_clear(); int **table_gpu_compute_n(const int ago, const int inum, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial, tagint **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success); void table_gpu_compute(const int ago, const int inum, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success); double table_gpu_bytes(); /* ---------------------------------------------------------------------- */ PairTableGPU::PairTableGPU(LAMMPS *lmp) : PairTable(lmp), gpu_mode(GPU_FORCE) { respa_enable = 0; reinitflag = 0; cpu_time = 0.0; suffix_flag |= Suffix::GPU; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairTableGPU::~PairTableGPU() { table_gpu_clear(); } /* ---------------------------------------------------------------------- */ void PairTableGPU::compute(int eflag, int vflag) { ev_init(eflag, vflag); int nall = atom->nlocal + atom->nghost; int inum, host_start; bool success = true; int *ilist, *numneigh, **firstneigh; if (gpu_mode != GPU_FORCE) { double sublo[3], subhi[3]; if (domain->triclinic == 0) { sublo[0] = domain->sublo[0]; sublo[1] = domain->sublo[1]; sublo[2] = domain->sublo[2]; subhi[0] = domain->subhi[0]; subhi[1] = domain->subhi[1]; subhi[2] = domain->subhi[2]; } else { domain->bbox(domain->sublo_lamda, domain->subhi_lamda, sublo, subhi); } inum = atom->nlocal; firstneigh = table_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, sublo, subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success); } else { inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; table_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success); } if (!success) error->one(FLERR, "Insufficient memory on accelerator"); if (atom->molecular != Atom::ATOMIC && neighbor->ago == 0) neighbor->build_topology(); if (host_start < inum) { cpu_time = platform::walltime(); cpu_compute(host_start, inum, eflag, vflag, ilist, numneigh, firstneigh); cpu_time = platform::walltime() - cpu_time; } } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairTableGPU::init_style() { int ntypes = atom->ntypes; // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double cut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { cut = init_one(i, j); cut *= cut; if (cut > maxcut) maxcut = cut; cutsq[i][j] = cutsq[j][i] = cut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; // pack tables and send them to device double ***table_coeffs = nullptr; double **table_data = nullptr; memory->create(table_coeffs, ntypes + 1, ntypes + 1, 6, "table:coeffs"); Table *tb; for (int i = 1; i <= atom->ntypes; i++) for (int j = 1; j <= atom->ntypes; j++) { int n = tabindex[i][j]; tb = &tables[n]; table_coeffs[i][j][0] = n; table_coeffs[i][j][1] = tb->nshiftbits; table_coeffs[i][j][2] = tb->nmask; table_coeffs[i][j][3] = tb->innersq; table_coeffs[i][j][4] = tb->invdelta; table_coeffs[i][j][5] = tb->deltasq6; } if (tabstyle != BITMAP) { memory->create(table_data, ntables, 6 * tablength, "table:data"); for (int n = 0; n < ntables; n++) { tb = &tables[n]; if (tabstyle == LOOKUP) { for (int k = 0; k < tablength - 1; k++) { table_data[n][6 * k + 1] = tb->e[k]; table_data[n][6 * k + 2] = tb->f[k]; } } else if (tabstyle == LINEAR) { for (int k = 0; k < tablength; k++) { table_data[n][6 * k + 0] = tb->rsq[k]; table_data[n][6 * k + 1] = tb->e[k]; table_data[n][6 * k + 2] = tb->f[k]; if (k < tablength - 1) { table_data[n][6 * k + 3] = tb->de[k]; table_data[n][6 * k + 4] = tb->df[k]; } } } else if (tabstyle == SPLINE) { for (int k = 0; k < tablength; k++) { table_data[n][6 * k + 0] = tb->rsq[k]; table_data[n][6 * k + 1] = tb->e[k]; table_data[n][6 * k + 2] = tb->f[k]; table_data[n][6 * k + 3] = tb->e2[k]; table_data[n][6 * k + 4] = tb->f2[k]; } } } } else { int ntable = 1 << tablength; memory->create(table_data, ntables, 6 * ntable, "table:data"); for (int n = 0; n < ntables; n++) { tb = &tables[n]; for (int k = 0; k < ntable; k++) { table_data[n][6 * k + 0] = tb->rsq[k]; table_data[n][6 * k + 1] = tb->e[k]; table_data[n][6 * k + 2] = tb->f[k]; table_data[n][6 * k + 3] = tb->de[k]; table_data[n][6 * k + 4] = tb->df[k]; table_data[n][6 * k + 5] = tb->drsq[k]; } } } int maxspecial = 0; if (atom->molecular != Atom::ATOMIC) maxspecial = atom->maxspecial; int mnf = 5e-2 * neighbor->oneatom; int success = table_gpu_init(atom->ntypes + 1, cutsq, table_coeffs, table_data, force->special_lj, atom->nlocal, atom->nlocal + atom->nghost, mnf, maxspecial, cell_size, gpu_mode, screen, tabstyle, ntables, tablength); GPU_EXTRA::check_flag(success, error, world); if (gpu_mode == GPU_FORCE) neighbor->add_request(this, NeighConst::REQ_FULL); memory->destroy(table_coeffs); memory->destroy(table_data); } /* ---------------------------------------------------------------------- */ double PairTableGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + table_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairTableGPU::cpu_compute(int start, int inum, int eflag, int /* vflag */, int *ilist, int *numneigh, int **firstneigh) { int i, j, ii, jj, jnum, itype, jtype, itable; double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair; double rsq, factor_lj, fraction, value, a, b; int *jlist; Table *tb; union_int_float_t rsq_lookup; int tlm1 = tablength - 1; double **x = atom->x; double **f = atom->f; int *type = atom->type; double *special_lj = force->special_lj; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { tb = &tables[tabindex[itype][jtype]]; if (rsq < tb->innersq) error->one(FLERR, "Pair distance < table inner cutoff"); if (tabstyle == LOOKUP) { itable = static_cast((rsq - tb->innersq) * tb->invdelta); if (itable >= tlm1) error->one(FLERR, "Pair distance > table outer cutoff"); fpair = factor_lj * tb->f[itable]; } else if (tabstyle == LINEAR) { itable = static_cast((rsq - tb->innersq) * tb->invdelta); if (itable >= tlm1) error->one(FLERR, "Pair distance > table outer cutoff"); fraction = (rsq - tb->rsq[itable]) * tb->invdelta; value = tb->f[itable] + fraction * tb->df[itable]; fpair = factor_lj * value; } else if (tabstyle == SPLINE) { itable = static_cast((rsq - tb->innersq) * tb->invdelta); if (itable >= tlm1) error->one(FLERR, "Pair distance > table outer cutoff"); b = (rsq - tb->rsq[itable]) * tb->invdelta; a = 1.0 - b; value = a * tb->f[itable] + b * tb->f[itable + 1] + ((a * a * a - a) * tb->f2[itable] + (b * b * b - b) * tb->f2[itable + 1]) * tb->deltasq6; fpair = factor_lj * value; } else { rsq_lookup.f = rsq; itable = rsq_lookup.i & tb->nmask; itable >>= tb->nshiftbits; fraction = (rsq_lookup.f - tb->rsq[itable]) * tb->drsq[itable]; value = tb->f[itable] + fraction * tb->df[itable]; fpair = factor_lj * value; } f[i][0] += delx * fpair; f[i][1] += dely * fpair; f[i][2] += delz * fpair; if (eflag) { if (tabstyle == LOOKUP) evdwl = tb->e[itable]; else if (tabstyle == LINEAR || tabstyle == BITMAP) evdwl = tb->e[itable] + fraction * tb->de[itable]; else evdwl = a * tb->e[itable] + b * tb->e[itable + 1] + ((a * a * a - a) * tb->e2[itable] + (b * b * b - b) * tb->e2[itable + 1]) * tb->deltasq6; evdwl *= factor_lj; } if (evflag) ev_tally_full(i, evdwl, 0.0, fpair, delx, dely, delz); } } } }