/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "string.h" #include "compute_stress_atom.h" #include "atom.h" #include "neighbor.h" #include "modify.h" #include "comm.h" #include "update.h" #include "force.h" #include "pair.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define MAX(a,b) ((a) > (b) ? (a) : (b)) /* ---------------------------------------------------------------------- */ ComputeStressAtom::ComputeStressAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg) { if (narg != 3) error->all("Illegal compute stress/atom command"); peratom_flag = 1; size_peratom = 6; comm_reverse = 6; neigh_half_once = 1; nmax = 0; stress = NULL; } /* ---------------------------------------------------------------------- */ ComputeStressAtom::~ComputeStressAtom() { memory->destroy_2d_double_array(stress); } /* ---------------------------------------------------------------------- */ void ComputeStressAtom::init() { if (force->pair == NULL || force->pair->single_enable == 0) error->all("Pair style does not support computing per-atom stress"); int count = 0; for (int i = 0; i < modify->ncompute; i++) if (strcmp(modify->compute[i]->style,"stress/atom") == 0) count++; if (count > 1 && comm->me == 0) error->warning("More than one compute stress/atom defined"); } /* ---------------------------------------------------------------------- */ void ComputeStressAtom::compute_peratom() { int i,j,k,n,itype,jtype,numneigh; double xtmp,ytmp,ztmp,delx,dely,delz,rsq; double factor_coul,factor_lj,fforce,rmass; int *neighs; Pair::One one; // grow stress array if necessary if (atom->nmax > nmax) { memory->destroy_2d_double_array(stress); nmax = atom->nmax; stress = memory->create_2d_double_array(nmax,6,"compute/stress/atom:stress"); vector_atom = stress; } // clear stress array // n includes ghosts only if newton_pair flag is set if (force->newton_pair) n = atom->nlocal + atom->nghost; else n = atom->nlocal; for (i = 0; i < n; i++) { stress[i][0] = 0.0; stress[i][1] = 0.0; stress[i][2] = 0.0; stress[i][3] = 0.0; stress[i][4] = 0.0; stress[i][5] = 0.0; } // if needed, build a half neighbor list if (!neighbor->half_every) neighbor->build_half(); // compute pairwise stress for all atoms via pair->single() // use half neighbor list double *special_coul = force->special_coul; double *special_lj = force->special_lj; double **cutsq = force->pair->cutsq; double **x = atom->x; int *type = atom->type; int nlocal = atom->nlocal; int nall = atom->nlocal + atom->nghost; for (i = 0; i < nlocal; i++) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; neighs = neighbor->firstneigh[i]; numneigh = neighbor->numneigh[i]; for (k = 0; k < numneigh; k++) { j = neighs[k]; if (j < nall) factor_coul = factor_lj = 1.0; else { factor_coul = special_coul[j/nall]; factor_lj = special_lj[j/nall]; j %= nall; } delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { force->pair->single(i,j,itype,jtype,rsq,factor_coul,factor_lj,0,one); fforce = one.fforce; stress[i][0] -= delx*delx*fforce; stress[i][1] -= dely*dely*fforce; stress[i][2] -= delz*delz*fforce; stress[i][3] -= delx*dely*fforce; stress[i][4] -= delx*delz*fforce; stress[i][5] -= dely*delz*fforce; if (force->newton_pair || j < nlocal) { stress[j][0] -= delx*delx*fforce; stress[j][1] -= dely*dely*fforce; stress[j][2] -= delz*delz*fforce; stress[j][3] -= delx*dely*fforce; stress[j][4] -= delx*delz*fforce; stress[j][5] -= dely*delz*fforce; } } } } // communicate stress between neighbor procs if (force->newton_pair) comm->reverse_comm_compute(this); // remove double counting of per-atom stress for (i = 0; i < nlocal; i++) { stress[i][0] *= 0.5; stress[i][1] *= 0.5; stress[i][2] *= 0.5; stress[i][3] *= 0.5; stress[i][4] *= 0.5; stress[i][5] *= 0.5; } // include kinetic energy term for each atom // mvv2e converts mv^2 to energy double **v = atom->v; double *mass = atom->mass; double mvv2e = force->mvv2e; for (i = 0; i < nlocal; i++) { rmass = mvv2e * mass[type[i]]; stress[i][0] -= rmass*v[i][0]*v[i][0]; stress[i][1] -= rmass*v[i][1]*v[i][1]; stress[i][2] -= rmass*v[i][2]*v[i][2]; stress[i][3] -= rmass*v[i][0]*v[i][1]; stress[i][4] -= rmass*v[i][0]*v[i][2]; stress[i][5] -= rmass*v[i][1]*v[i][2]; } // convert to pressure units (actually stress/volume = pressure) double nktv2p = force->nktv2p; for (i = 0; i < nlocal; i++) { stress[i][0] *= nktv2p; stress[i][1] *= nktv2p; stress[i][2] *= nktv2p; stress[i][3] *= nktv2p; stress[i][4] *= nktv2p; stress[i][5] *= nktv2p; } } /* ---------------------------------------------------------------------- */ int ComputeStressAtom::pack_reverse_comm(int n, int first, double *buf) { int i,m,last; m = 0; last = first + n; for (i = first; i < last; i++) { buf[m++] = stress[i][0]; buf[m++] = stress[i][1]; buf[m++] = stress[i][2]; buf[m++] = stress[i][3]; buf[m++] = stress[i][4]; buf[m++] = stress[i][5]; } return 6; } /* ---------------------------------------------------------------------- */ void ComputeStressAtom::unpack_reverse_comm(int n, int *list, double *buf) { int i,j,m; m = 0; for (i = 0; i < n; i++) { j = list[i]; stress[j][0] += buf[m++]; stress[j][1] += buf[m++]; stress[j][2] += buf[m++]; stress[j][3] += buf[m++]; stress[j][4] += buf[m++]; stress[j][5] += buf[m++]; } } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ int ComputeStressAtom::memory_usage() { int bytes = nmax*6 * sizeof(double); return bytes; }