// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ------------------------------------------------------------------------ Contributing authors: Julien Tranchida (SNL) Aidan Thompson (SNL) Please cite the related publication: Tranchida, J., Plimpton, S. J., Thibaudeau, P., & Thompson, A. P. (2018). Massively parallel symplectic algorithm for coupled magnetic spin dynamics and molecular dynamics. Journal of Computational Physics. ------------------------------------------------------------------------- */ #include "pair_spin_dmi.h" #include "atom.h" #include "comm.h" #include "error.h" #include "force.h" #include "memory.h" #include "neigh_list.h" #include #include using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairSpinDmi::~PairSpinDmi() { if (allocated) { memory->destroy(setflag); memory->destroy(cut_spin_dmi); memory->destroy(DM); memory->destroy(v_dmx); memory->destroy(v_dmy); memory->destroy(v_dmz); memory->destroy(vmech_dmx); memory->destroy(vmech_dmy); memory->destroy(vmech_dmz); memory->destroy(cutsq); memory->destroy(emag); } } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairSpinDmi::settings(int narg, char **arg) { PairSpin::settings(narg,arg); cut_spin_dmi_global = utils::numeric(FLERR,arg[0],false,lmp); // reset cutoffs that have been explicitly set if (allocated) { int i,j; for (i = 1; i <= atom->ntypes; i++) { for (j = i+1; j <= atom->ntypes; j++) { if (setflag[i][j]) { cut_spin_dmi[i][j] = cut_spin_dmi_global; } } } } } /* ---------------------------------------------------------------------- set coeffs for one or more type spin pairs (only one for now) ------------------------------------------------------------------------- */ void PairSpinDmi::coeff(int narg, char **arg) { if (!allocated) allocate(); // check if args correct if (strcmp(arg[2],"dmi") != 0) error->all(FLERR,"Incorrect args in pair_style command"); if (narg != 8) error->all(FLERR,"Incorrect args in pair_style command"); int ilo,ihi,jlo,jhi; utils::bounds(FLERR,arg[0],1,atom->ntypes,ilo,ihi,error); utils::bounds(FLERR,arg[1],1,atom->ntypes,jlo,jhi,error); const double rij = utils::numeric(FLERR,arg[3],false,lmp); const double dm = utils::numeric(FLERR,arg[4],false,lmp); double dmx = utils::numeric(FLERR,arg[5],false,lmp); double dmy = utils::numeric(FLERR,arg[6],false,lmp); double dmz = utils::numeric(FLERR,arg[7],false,lmp); double inorm = 1.0/(dmx*dmx+dmy*dmy+dmz*dmz); dmx *= inorm; dmy *= inorm; dmz *= inorm; int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { cut_spin_dmi[i][j] = rij; DM[i][j] = dm; v_dmx[i][j] = dmx * dm / hbar; v_dmy[i][j] = dmy * dm / hbar; v_dmz[i][j] = dmz * dm / hbar; vmech_dmx[i][j] = dmx * dm; vmech_dmy[i][j] = dmy * dm; vmech_dmz[i][j] = dmz * dm; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args in pair_style command"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairSpinDmi::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set"); DM[j][i] = DM[i][j]; v_dmx[j][i] = v_dmx[i][j]; v_dmy[j][i] = v_dmy[i][j]; v_dmz[j][i] = v_dmz[i][j]; vmech_dmx[j][i] = vmech_dmx[i][j]; vmech_dmy[j][i] = vmech_dmy[i][j]; vmech_dmz[j][i] = vmech_dmz[i][j]; cut_spin_dmi[j][i] = cut_spin_dmi[i][j]; return cut_spin_dmi_global; } /* ---------------------------------------------------------------------- extract the larger cutoff ------------------------------------------------------------------------- */ void *PairSpinDmi::extract(const char *str, int &dim) { dim = 0; if (strcmp(str,"cut") == 0) return (void *) &cut_spin_dmi_global; return nullptr; } /* ---------------------------------------------------------------------- */ void PairSpinDmi::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; double evdwl, ecoul; double xi[3], eij[3]; double delx,dely,delz; double spi[3], spj[3]; double fi[3], fmi[3]; double local_cut2; double rsq, inorm; int *ilist,*jlist,*numneigh,**firstneigh; evdwl = ecoul = 0.0; ev_init(eflag,vflag); double **x = atom->x; double **f = atom->f; double **fm = atom->fm; double **sp = atom->sp; int *type = atom->type; int nlocal = atom->nlocal; int newton_pair = force->newton_pair; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // checking size of emag if (nlocal_max < nlocal) { // grow emag lists if necessary nlocal_max = nlocal; memory->grow(emag,nlocal_max,"pair/spin:emag"); } // dmi computation // loop over all atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; xi[0] = x[i][0]; xi[1] = x[i][1]; xi[2] = x[i][2]; spi[0] = sp[i][0]; spi[1] = sp[i][1]; spi[2] = sp[i][2]; emag[i] = 0.0; // loop on neighbors for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; jtype = type[j]; spj[0] = sp[j][0]; spj[1] = sp[j][1]; spj[2] = sp[j][2]; evdwl = 0.0; fi[0] = fi[1] = fi[2] = 0.0; fmi[0] = fmi[1] = fmi[2] = 0.0; delx = xi[0] - x[j][0]; dely = xi[1] - x[j][1]; delz = xi[2] - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; inorm = 1.0/sqrt(rsq); eij[0] = -inorm*delx; eij[1] = -inorm*dely; eij[2] = -inorm*delz; local_cut2 = cut_spin_dmi[itype][jtype]*cut_spin_dmi[itype][jtype]; // compute dmi interaction if (rsq <= local_cut2) { compute_dmi(i,j,eij,fmi,spj); if (lattice_flag) compute_dmi_mech(i,j,rsq,eij,fi,spi,spj); if (eflag) { evdwl -= (spi[0]*fmi[0] + spi[1]*fmi[1] + spi[2]*fmi[2]); evdwl *= 0.5*hbar; emag[i] += evdwl; } else evdwl = 0.0; f[i][0] += fi[0]; f[i][1] += fi[1]; f[i][2] += fi[2]; if (newton_pair || j < nlocal) { f[j][0] -= fi[0]; f[j][1] -= fi[1]; f[j][2] -= fi[2]; } fm[i][0] += fmi[0]; fm[i][1] += fmi[1]; fm[i][2] += fmi[2]; if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair, evdwl,ecoul,fi[0],fi[1],fi[2],delx,dely,delz); } } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- update the pair interactions fmi acting on the spin ii ------------------------------------------------------------------------- */ void PairSpinDmi::compute_single_pair(int ii, double fmi[3]) { int *type = atom->type; double **x = atom->x; double **sp = atom->sp; double local_cut2; double xi[3], eij[3]; double delx,dely,delz; double spj[3]; int j,jnum,itype,jtype,ntypes; int k,locflag; int *jlist,*numneigh,**firstneigh; double rsq, inorm; numneigh = list->numneigh; firstneigh = list->firstneigh; // check if interaction applies to type of ii itype = type[ii]; ntypes = atom->ntypes; locflag = 0; k = 1; while (k <= ntypes) { if (k <= itype) { if (setflag[k][itype] == 1) { locflag =1; break; } k++; } else if (k > itype) { if (setflag[itype][k] == 1) { locflag =1; break; } k++; } else error->all(FLERR,"Wrong type number"); } // if interaction applies to type ii, // locflag = 1 and compute pair interaction if (locflag == 1) { xi[0] = x[ii][0]; xi[1] = x[ii][1]; xi[2] = x[ii][2]; jlist = firstneigh[ii]; jnum = numneigh[ii]; for (int jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; jtype = type[j]; spj[0] = sp[j][0]; spj[1] = sp[j][1]; spj[2] = sp[j][2]; delx = xi[0] - x[j][0]; dely = xi[1] - x[j][1]; delz = xi[2] - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; inorm = 1.0/sqrt(rsq); eij[0] = -inorm*delx; eij[1] = -inorm*dely; eij[2] = -inorm*delz; local_cut2 = cut_spin_dmi[itype][jtype]*cut_spin_dmi[itype][jtype]; if (rsq <= local_cut2) { compute_dmi(ii,j,eij,fmi,spj); } } } } /* ---------------------------------------------------------------------- compute the dmi interaction between spin i and spin j ------------------------------------------------------------------------- */ void PairSpinDmi::compute_dmi(int i, int j, double eij[3], double fmi[3], double spj[3]) { int *type = atom->type; int itype, jtype; double dmix, dmiy, dmiz; itype = type[i]; jtype = type[j]; dmix = eij[1]*v_dmz[itype][jtype] - eij[2]*v_dmy[itype][jtype]; dmiy = eij[2]*v_dmx[itype][jtype] - eij[0]*v_dmz[itype][jtype]; dmiz = eij[0]*v_dmy[itype][jtype] - eij[1]*v_dmx[itype][jtype]; fmi[0] -= (dmiy*spj[2] - dmiz*spj[1]); fmi[1] -= (dmiz*spj[0] - dmix*spj[2]); fmi[2] -= (dmix*spj[1] - dmiy*spj[0]); } /* ---------------------------------------------------------------------- compute the mechanical force due to the dmi interaction between atom i and atom j ------------------------------------------------------------------------- */ void PairSpinDmi::compute_dmi_mech(int i, int j, double rsq, double /*eij*/[3], double fi[3], double spi[3], double spj[3]) { int *type = atom->type; int itype, jtype; double dmix,dmiy,dmiz; itype = type[i]; jtype = type[j]; double csx,csy,csz,cdmx,cdmy,cdmz,irij; irij = 1.0/sqrt(rsq); dmix = vmech_dmx[itype][jtype]; dmiy = vmech_dmy[itype][jtype]; dmiz = vmech_dmz[itype][jtype]; csx = (spi[1]*spj[2] - spi[2]*spj[1]); csy = (spi[2]*spj[0] - spi[0]*spj[2]); csz = (spi[0]*spj[1] - spi[1]*spj[0]); cdmx = (dmiy*csz - dmiz*csy); cdmy = (dmiz*csx - dmix*csz); cdmz = (dmix*csy - dmiy*csz); fi[0] += 0.5*irij*cdmx; fi[1] += 0.5*irij*cdmy; fi[2] += 0.5*irij*cdmz; } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairSpinDmi::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cut_spin_dmi,n+1,n+1,"pair:cut_spin_dmi"); memory->create(DM,n+1,n+1,"pair:DM"); memory->create(v_dmx,n+1,n+1,"pair:DM_vector_x"); memory->create(v_dmy,n+1,n+1,"pair:DM_vector_y"); memory->create(v_dmz,n+1,n+1,"pair:DM_vector_z"); memory->create(vmech_dmx,n+1,n+1,"pair:DMmech_vector_x"); memory->create(vmech_dmy,n+1,n+1,"pair:DMmech_vector_y"); memory->create(vmech_dmz,n+1,n+1,"pair:DMmech_vector_z"); memory->create(cutsq,n+1,n+1,"pair:cutsq"); } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairSpinDmi::write_restart(FILE *fp) { write_restart_settings(fp); int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j],sizeof(int),1,fp); if (setflag[i][j]) { fwrite(&DM[i][j],sizeof(double),1,fp); fwrite(&v_dmx[i][j],sizeof(double),1,fp); fwrite(&v_dmy[i][j],sizeof(double),1,fp); fwrite(&v_dmz[i][j],sizeof(double),1,fp); fwrite(&vmech_dmx[i][j],sizeof(double),1,fp); fwrite(&vmech_dmy[i][j],sizeof(double),1,fp); fwrite(&vmech_dmz[i][j],sizeof(double),1,fp); fwrite(&cut_spin_dmi[i][j],sizeof(double),1,fp); } } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairSpinDmi::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) { for (j = i; j <= atom->ntypes; j++) { if (me == 0) utils::sfread(FLERR,&setflag[i][j],sizeof(int),1,fp,nullptr,error); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); if (setflag[i][j]) { if (me == 0) { utils::sfread(FLERR,&DM[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&v_dmx[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&v_dmy[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&v_dmz[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&vmech_dmx[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&vmech_dmy[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&vmech_dmz[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&cut_spin_dmi[i][j],sizeof(double),1,fp,nullptr,error); } MPI_Bcast(&DM[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&v_dmx[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&v_dmy[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&v_dmz[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&vmech_dmx[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&vmech_dmy[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&vmech_dmz[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&cut_spin_dmi[i][j],1,MPI_DOUBLE,0,world); } } } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairSpinDmi::write_restart_settings(FILE *fp) { fwrite(&cut_spin_dmi_global,sizeof(double),1,fp); fwrite(&offset_flag,sizeof(int),1,fp); fwrite(&mix_flag,sizeof(int),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairSpinDmi::read_restart_settings(FILE *fp) { if (comm->me == 0) { utils::sfread(FLERR,&cut_spin_dmi_global,sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&offset_flag,sizeof(int),1,fp,nullptr,error); utils::sfread(FLERR,&mix_flag,sizeof(int),1,fp,nullptr,error); } MPI_Bcast(&cut_spin_dmi_global,1,MPI_DOUBLE,0,world); MPI_Bcast(&offset_flag,1,MPI_INT,0,world); MPI_Bcast(&mix_flag,1,MPI_INT,0,world); }