// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_reduce_chunk.h" #include "arg_info.h" #include "atom.h" #include "compute.h" #include "compute_chunk_atom.h" #include "error.h" #include "fix.h" #include "input.h" #include "memory.h" #include "modify.h" #include "update.h" #include "variable.h" #include using namespace LAMMPS_NS; enum{SUM,MINN,MAXX}; #define BIG 1.0e20 /* ---------------------------------------------------------------------- */ ComputeReduceChunk::ComputeReduceChunk(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), which(nullptr), argindex(nullptr), value2index(nullptr), idchunk(nullptr), ids(nullptr), vlocal(nullptr), vglobal(nullptr), alocal(nullptr), aglobal(nullptr), varatom(nullptr) { if (narg < 6) error->all(FLERR,"Illegal compute reduce/chunk command"); // ID of compute chunk/atom idchunk = utils::strdup(arg[3]); init_chunk(); // mode if (strcmp(arg[4],"sum") == 0) mode = SUM; else if (strcmp(arg[4],"min") == 0) mode = MINN; else if (strcmp(arg[4],"max") == 0) mode = MAXX; else error->all(FLERR,"Illegal compute reduce/chunk command"); int iarg = 5; // expand args if any have wildcard character "*" int expand = 0; char **earg; int nargnew = utils::expand_args(FLERR,narg-iarg,&arg[iarg],1,earg,lmp); if (earg != &arg[iarg]) expand = 1; arg = earg; // parse values until one isn't recognized which = new int[nargnew]; argindex = new int[nargnew]; ids = new char*[nargnew]; value2index = new int[nargnew]; for (int i=0; i < nargnew; ++i) { which[i] = argindex[i] = value2index[i] = ArgInfo::UNKNOWN; ids[i] = nullptr; } nvalues = 0; for (iarg = 0; iarg < nargnew; iarg++) { ArgInfo argi(arg[iarg]); which[nvalues] = argi.get_type(); argindex[nvalues] = argi.get_index1(); ids[nvalues] = argi.copy_name(); if ((which[nvalues] == ArgInfo::UNKNOWN) || (which[nvalues] == ArgInfo::NONE) || (argi.get_dim() > 1)) error->all(FLERR,"Illegal compute reduce/chunk command"); nvalues++; } // if wildcard expansion occurred, free earg memory from expand_args() if (expand) { for (int i = 0; i < nargnew; i++) delete [] earg[i]; memory->sfree(earg); } // error check for (int i = 0; i < nvalues; i++) { if (which[i] == ArgInfo::COMPUTE) { int icompute = modify->find_compute(ids[i]); if (icompute < 0) error->all(FLERR,"Compute ID for compute reduce/chunk does not exist"); if (!modify->compute[icompute]->peratom_flag) error->all(FLERR,"Compute reduce/chunk compute does not " "calculate per-atom values"); if (argindex[i] == 0 && modify->compute[icompute]->size_peratom_cols != 0) error->all(FLERR,"Compute reduce/chunk compute does not " "calculate a per-atom vector"); if (argindex[i] && modify->compute[icompute]->size_peratom_cols == 0) error->all(FLERR,"Compute reduce/chunk compute does not " "calculate a per-atom array"); if (argindex[i] && argindex[i] > modify->compute[icompute]->size_peratom_cols) error->all(FLERR, "Compute reduce/chunk compute array is accessed out-of-range"); } else if (which[i] == ArgInfo::FIX) { int ifix = modify->find_fix(ids[i]); if (ifix < 0) error->all(FLERR,"Fix ID for compute reduce/chunk does not exist"); if (!modify->fix[ifix]->peratom_flag) error->all(FLERR,"Compute reduce/chunk fix does not " "calculate per-atom values"); if (argindex[i] == 0 && modify->fix[ifix]->size_peratom_cols != 0) error->all(FLERR,"Compute reduce/chunk fix does not " "calculate a per-atom vector"); if (argindex[i] && modify->fix[ifix]->size_peratom_cols == 0) error->all(FLERR,"Compute reduce/chunk fix does not " "calculate a per-atom array"); if (argindex[i] && argindex[i] > modify->fix[ifix]->size_peratom_cols) error->all(FLERR,"Compute reduce/chunk fix array is " "accessed out-of-range"); } else if (which[i] == ArgInfo::VARIABLE) { int ivariable = input->variable->find(ids[i]); if (ivariable < 0) error->all(FLERR,"Variable name for compute reduce/chunk does not exist"); if (input->variable->atomstyle(ivariable) == 0) error->all(FLERR,"Compute reduce/chunk variable is " "not atom-style variable"); } } // this compute produces either a vector or array if (nvalues == 1) { vector_flag = 1; size_vector_variable = 1; extvector = 0; } else { array_flag = 1; size_array_rows_variable = 1; size_array_cols = nvalues; extarray = 0; } // setup if (mode == SUM) initvalue = 0.0; else if (mode == MINN) initvalue = BIG; else if (mode == MAXX) initvalue = -BIG; maxchunk = 0; vlocal = vglobal = nullptr; alocal = aglobal = nullptr; maxatom = 0; varatom = nullptr; } /* ---------------------------------------------------------------------- */ ComputeReduceChunk::~ComputeReduceChunk() { delete [] idchunk; delete [] which; delete [] argindex; for (int m = 0; m < nvalues; m++) delete [] ids[m]; delete [] ids; delete [] value2index; memory->destroy(vlocal); memory->destroy(vglobal); memory->destroy(alocal); memory->destroy(aglobal); memory->destroy(varatom); } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::init() { init_chunk(); // set indices of all computes,fixes,variables for (int m = 0; m < nvalues; m++) { if (which[m] == ArgInfo::COMPUTE) { int icompute = modify->find_compute(ids[m]); if (icompute < 0) error->all(FLERR,"Compute ID for compute reduce/chunk does not exist"); value2index[m] = icompute; } else if (which[m] == ArgInfo::FIX) { int ifix = modify->find_fix(ids[m]); if (ifix < 0) error->all(FLERR,"Fix ID for compute reduce/chunk does not exist"); value2index[m] = ifix; } else if (which[m] == ArgInfo::VARIABLE) { int ivariable = input->variable->find(ids[m]); if (ivariable < 0) error->all(FLERR,"Variable name for compute reduce/chunk does not exist"); value2index[m] = ivariable; } } } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::init_chunk() { int icompute = modify->find_compute(idchunk); if (icompute < 0) error->all(FLERR,"Chunk/atom compute does not exist for " "compute reduce/chunk"); cchunk = (ComputeChunkAtom *) modify->compute[icompute]; if (strcmp(cchunk->style,"chunk/atom") != 0) error->all(FLERR,"Compute reduce/chunk does not use chunk/atom compute"); } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::compute_vector() { invoked_vector = update->ntimestep; // compute chunk/atom assigns atoms to chunk IDs // extract ichunk index vector from compute // ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms nchunk = cchunk->setup_chunks(); cchunk->compute_ichunk(); ichunk = cchunk->ichunk; if (!nchunk) return; size_vector = nchunk; if (nchunk > maxchunk) { memory->destroy(vlocal); memory->destroy(vglobal); maxchunk = nchunk; memory->create(vlocal,maxchunk,"reduce/chunk:vlocal"); memory->create(vglobal,maxchunk,"reduce/chunk:vglobal"); vector = vglobal; } // perform local reduction of single peratom value compute_one(0,vlocal,1); // reduce the per-chunk values across all procs if (mode == SUM) MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_SUM,world); else if (mode == MINN) MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_MIN,world); else if (mode == MAXX) MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_MAX,world); } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::compute_array() { invoked_array = update->ntimestep; // compute chunk/atom assigns atoms to chunk IDs // extract ichunk index vector from compute // ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms nchunk = cchunk->setup_chunks(); cchunk->compute_ichunk(); ichunk = cchunk->ichunk; if (!nchunk) return; size_array_rows = nchunk; if (nchunk > maxchunk) { memory->destroy(alocal); memory->destroy(aglobal); maxchunk = nchunk; memory->create(alocal,maxchunk,nvalues,"reduce/chunk:alocal"); memory->create(aglobal,maxchunk,nvalues,"reduce/chunk:aglobal"); array = aglobal; } // perform local reduction of all peratom values for (int m = 0; m < nvalues; m++) compute_one(m,&alocal[0][m],nvalues); // reduce the per-chunk values across all procs if (mode == SUM) MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*nvalues, MPI_DOUBLE,MPI_SUM,world); else if (mode == MINN) MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*nvalues, MPI_DOUBLE,MPI_MIN,world); else if (mode == MAXX) MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*nvalues, MPI_DOUBLE,MPI_MAX,world); } /* ---------------------------------------------------------------------- */ void ComputeReduceChunk::compute_one(int m, double *vchunk, int nstride) { // initialize per-chunk values in accumulation vector for (int i = 0; i < nchunk; i += nstride) vchunk[i] = initvalue; // loop over my atoms // use peratom input and chunk ID of each atom to update vector int *mask = atom->mask; int nlocal = atom->nlocal; int index = -1; int vidx = value2index[m]; // initialization in case it has not yet been run, e.g. when // the compute was invoked right after it has been created if (vidx == ArgInfo::UNKNOWN) { init(); vidx = value2index[m]; } if (which[m] == ArgInfo::COMPUTE) { Compute *compute = modify->compute[vidx]; if (!(compute->invoked_flag & Compute::INVOKED_PERATOM)) { compute->compute_peratom(); compute->invoked_flag |= Compute::INVOKED_PERATOM; } if (argindex[m] == 0) { double *vcompute = compute->vector_atom; for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],vcompute[i]); } } else { double **acompute = compute->array_atom; int argindexm1 = argindex[m] - 1; for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],acompute[i][argindexm1]); } } // access fix fields, check if fix frequency is a match } else if (which[m] == ArgInfo::FIX) { Fix *fix = modify->fix[vidx]; if (update->ntimestep % fix->peratom_freq) error->all(FLERR,"Fix used in compute reduce/chunk not " "computed at compatible time"); if (argindex[m] == 0) { double *vfix = fix->vector_atom; for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],vfix[i]); } } else { double **afix = fix->array_atom; int argindexm1 = argindex[m] - 1; for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],afix[i][argindexm1]); } } // evaluate atom-style variable } else if (which[m] == ArgInfo::VARIABLE) { if (atom->nmax > maxatom) { memory->destroy(varatom); maxatom = atom->nmax; memory->create(varatom,maxatom,"reduce/chunk:varatom"); } input->variable->compute_atom(vidx,igroup,varatom,1,0); for (int i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0) continue; combine(vchunk[index*nstride],varatom[i]); } } } /* ---------------------------------------------------------------------- combine two values according to reduction mode ------------------------------------------------------------------------- */ void ComputeReduceChunk::combine(double &one, double two) { if (mode == SUM) one += two; else if (mode == MINN) { if (two < one) one = two; } else if (mode == MAXX) { if (two > one) one = two; } } /* ---------------------------------------------------------------------- lock methods: called by fix ave/time these methods insure vector/array size is locked for Nfreq epoch by passing lock info along to compute chunk/atom ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- increment lock counter ------------------------------------------------------------------------- */ void ComputeReduceChunk::lock_enable() { cchunk->lockcount++; } /* ---------------------------------------------------------------------- decrement lock counter in compute chunk/atom, if it still exists ------------------------------------------------------------------------- */ void ComputeReduceChunk::lock_disable() { int icompute = modify->find_compute(idchunk); if (icompute >= 0) { cchunk = (ComputeChunkAtom *) modify->compute[icompute]; cchunk->lockcount--; } } /* ---------------------------------------------------------------------- calculate and return # of chunks = length of vector/array ------------------------------------------------------------------------- */ int ComputeReduceChunk::lock_length() { nchunk = cchunk->setup_chunks(); return nchunk; } /* ---------------------------------------------------------------------- set the lock from startstep to stopstep ------------------------------------------------------------------------- */ void ComputeReduceChunk::lock(Fix *fixptr, bigint startstep, bigint stopstep) { cchunk->lock(fixptr,startstep,stopstep); } /* ---------------------------------------------------------------------- unset the lock ------------------------------------------------------------------------- */ void ComputeReduceChunk::unlock(Fix *fixptr) { cchunk->unlock(fixptr); } /* ---------------------------------------------------------------------- memory usage of local data ------------------------------------------------------------------------- */ double ComputeReduceChunk::memory_usage() { double bytes = (bigint) maxatom * sizeof(double); if (nvalues == 1) bytes += (double) maxchunk * 2 * sizeof(double); else bytes += (double) maxchunk * nvalues * 2 * sizeof(double); return bytes; }