/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_reduce_region.h" #include "arg_info.h" #include "atom.h" #include "error.h" #include "fix.h" #include "group.h" #include "input.h" #include "memory.h" #include "region.h" #include "update.h" #include "variable.h" using namespace LAMMPS_NS; static constexpr double BIG = 1.0e20; /* ---------------------------------------------------------------------- */ ComputeReduceRegion::ComputeReduceRegion(LAMMPS *lmp, int narg, char **arg) : ComputeReduce(lmp, narg, arg) { if (input_mode == LOCAL) error->all(FLERR, "Compute reduce/region cannot use local data as input"); } /* ---------------------------------------------------------------------- calculate reduced value for one input M and return it if flag = -1: sum/min/max/ave all values in vector limit to atoms in group and region if mode = MIN or MAX, also set index to which vector value wins if flag >= 0: simply return vector[flag] ------------------------------------------------------------------------- */ double ComputeReduceRegion::compute_one(int m, int flag) { region->prematch(); // invoke the appropriate attribute,compute,fix,variable // compute scalar quantity by summing over atom scalars // only include atoms in group index = -1; auto &val = values[m]; // initialization in case it has not yet been run, e.g. when // the compute was invoked right after it has been created if ((val.which == ArgInfo::COMPUTE) || (val.which == ArgInfo::FIX)) { if (val.val.c == nullptr) init(); } int aidx = val.argindex; double **x = atom->x; int *mask = atom->mask; int nlocal = atom->nlocal; double one = 0.0; if (mode == MINN) one = BIG; if (mode == MAXX) one = -BIG; if (val.which == ArgInfo::X) { if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0], x[i][1], x[i][2])) combine(one, x[i][aidx], i); } else one = x[flag][aidx]; } else if (val.which == ArgInfo::V) { double **v = atom->v; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0], x[i][1], x[i][2])) combine(one, v[i][aidx], i); } else one = v[flag][aidx]; } else if (val.which == ArgInfo::F) { double **f = atom->f; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0], x[i][1], x[i][2])) combine(one, f[i][aidx], i); } else one = f[flag][aidx]; // invoke compute if not previously invoked } else if (val.which == ArgInfo::COMPUTE) { if (!(val.val.c->invoked_flag & Compute::INVOKED_PERATOM)) { val.val.c->compute_peratom(); val.val.c->invoked_flag |= Compute::INVOKED_PERATOM; } if (aidx == 0) { double *compute_vector = val.val.c->vector_atom; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0], x[i][1], x[i][2])) combine(one, compute_vector[i], i); } else one = compute_vector[flag]; } else { double **compute_array = val.val.c->array_atom; int aidxm1 = aidx - 1; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0], x[i][1], x[i][2])) combine(one, compute_array[i][aidxm1], i); } else one = compute_array[flag][aidxm1]; } // check if fix frequency is a match } else if (val.which == ArgInfo::FIX) { if (update->ntimestep % val.val.f->peratom_freq) error->all(FLERR, "Fix {} used in compute {} not computed at compatible time", val.id, style); if (aidx == 0) { double *fix_vector = val.val.f->vector_atom; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0], x[i][1], x[i][2])) combine(one, fix_vector[i], i); } else one = fix_vector[flag]; } else { double **fix_array = val.val.f->array_atom; int aidxm1 = aidx - 1; if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0], x[i][1], x[i][2])) combine(one, fix_array[i][aidxm1], i); } else one = fix_array[flag][aidxm1]; } // evaluate atom-style variable } else if (val.which == ArgInfo::VARIABLE) { if (atom->nmax > maxatom) { maxatom = atom->nmax; memory->destroy(varatom); memory->create(varatom, maxatom, "reduce/region:varatom"); } input->variable->compute_atom(val.val.v, igroup, varatom, 1, 0); if (flag < 0) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0], x[i][1], x[i][2])) combine(one, varatom[i], i); } else one = varatom[flag]; } return one; } /* ---------------------------------------------------------------------- */ bigint ComputeReduceRegion::count(int m) { auto &val = values[m]; if (val.which == ArgInfo::X || val.which == ArgInfo::V || val.which == ArgInfo::F) return group->count(igroup, region); else if (val.which == ArgInfo::COMPUTE) return group->count(igroup, region); else if (val.which == ArgInfo::FIX) return group->count(igroup, region); else if (val.which == ArgInfo::VARIABLE) return group->count(igroup, region); bigint dummy = 0; return dummy; }