/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Carolyn Phillips (U Mich), reservoir energy tally ------------------------------------------------------------------------- */ #include "mpi.h" #include "math.h" #include "string.h" #include "stdlib.h" #include "fix_langevin.h" #include "atom.h" #include "force.h" #include "update.h" #include "modify.h" #include "compute.h" #include "domain.h" #include "region.h" #include "respa.h" #include "comm.h" #include "random_mars.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; enum{NOBIAS,BIAS}; /* ---------------------------------------------------------------------- */ FixLangevin::FixLangevin(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg) { if (narg < 7) error->all("Illegal fix langevin command"); scalar_flag = 1; global_freq = 1; extscalar = 1; nevery = 1; t_start = atof(arg[3]); t_stop = atof(arg[4]); t_period = atof(arg[5]); int seed = atoi(arg[6]); if (t_period <= 0.0) error->all("Fix langevin period must be > 0.0"); if (seed <= 0) error->all("Illegal fix langevin command"); // initialize Marsaglia RNG with processor-unique seed random = new RanMars(lmp,seed + comm->me); // allocate per-type arrays for force prefactors gfactor1 = new double[atom->ntypes+1]; gfactor2 = new double[atom->ntypes+1]; ratio = new double[atom->ntypes+1]; // optional args for (int i = 1; i <= atom->ntypes; i++) ratio[i] = 1.0; tally = 0; int iarg = 7; while (iarg < narg) { if (strcmp(arg[iarg],"scale") == 0) { if (iarg+3 > narg) error->all("Illegal fix langevin command"); int itype = atoi(arg[iarg+1]); double scale = atof(arg[iarg+2]); if (itype <= 0 || itype > atom->ntypes) error->all("Illegal fix langevin command"); ratio[itype] = scale; iarg += 3; } else if (strcmp(arg[iarg],"tally") == 0) { if (iarg+2 > narg) error->all("Illegal fix langevin command"); if (strcmp(arg[iarg+1],"no") == 0) tally = 0; else if (strcmp(arg[iarg+1],"yes") == 0) tally = 1; else error->all("Illegal fix langevin command"); iarg += 2; } else error->all("Illegal fix langevin command"); } // set temperature = NULL, user can override via fix_modify if wants bias id_temp = NULL; temperature = NULL; flangevin = NULL; nmax = 0; energy = 0.0; } /* ---------------------------------------------------------------------- */ FixLangevin::~FixLangevin() { delete random; delete [] gfactor1; delete [] gfactor2; delete [] ratio; delete [] id_temp; memory->destroy_2d_double_array(flangevin); } /* ---------------------------------------------------------------------- */ int FixLangevin::setmask() { int mask = 0; mask |= POST_FORCE; mask |= POST_FORCE_RESPA; mask |= END_OF_STEP; mask |= THERMO_ENERGY; return mask; } /* ---------------------------------------------------------------------- */ void FixLangevin::init() { // set force prefactors if (!atom->rmass) { for (int i = 1; i <= atom->ntypes; i++) { gfactor1[i] = -atom->mass[i] / t_period / force->ftm2v; gfactor2[i] = sqrt(atom->mass[i]) * sqrt(24.0*force->boltz/t_period/update->dt/force->mvv2e) / force->ftm2v; gfactor1[i] *= 1.0/ratio[i]; gfactor2[i] *= 1.0/sqrt(ratio[i]); } } if (temperature && temperature->tempbias) which = BIAS; else which = NOBIAS; if (strcmp(update->integrate_style,"respa") == 0) nlevels_respa = ((Respa *) update->integrate)->nlevels; } /* ---------------------------------------------------------------------- */ void FixLangevin::setup(int vflag) { if (strcmp(update->integrate_style,"verlet") == 0) post_force(vflag); else { ((Respa *) update->integrate)->copy_flevel_f(nlevels_respa-1); post_force_respa(vflag,nlevels_respa-1,0); ((Respa *) update->integrate)->copy_f_flevel(nlevels_respa-1); } } /* ---------------------------------------------------------------------- */ void FixLangevin::post_force(int vflag) { if (tally) post_force_tally(); else post_force_no_tally(); } /* ---------------------------------------------------------------------- */ void FixLangevin::post_force_respa(int vflag, int ilevel, int iloop) { if (ilevel == nlevels_respa-1) post_force(vflag); } /* ---------------------------------------------------------------------- */ void FixLangevin::post_force_no_tally() { double gamma1,gamma2; double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; double delta = update->ntimestep - update->beginstep; delta /= update->endstep - update->beginstep; double t_target = t_start + delta * (t_stop-t_start); double tsqrt = sqrt(t_target); // apply damping and thermostat to atoms in group // for BIAS: // calculate temperature since some computes require temp // computed on current nlocal atoms to remove bias // test v = 0 since some computes mask non-participating atoms via v = 0 // and added force has extra term not multiplied by v = 0 if (rmass) { double boltz = force->boltz; double dt = update->dt; double mvv2e = force->mvv2e; double ftm2v = force->ftm2v; if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { gamma1 = -rmass[i] / t_period / ftm2v; gamma2 = sqrt(rmass[i]) * sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v; gamma1 *= 1.0/ratio[type[i]]; gamma2 *= 1.0/sqrt(ratio[type[i]]) * tsqrt; f[i][0] += gamma1*v[i][0] + gamma2*(random->uniform()-0.5); f[i][1] += gamma1*v[i][1] + gamma2*(random->uniform()-0.5); f[i][2] += gamma1*v[i][2] + gamma2*(random->uniform()-0.5); } } } else if (which == BIAS) { double tmp = temperature->compute_scalar(); for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { gamma1 = -rmass[i] / t_period / ftm2v; gamma2 = sqrt(rmass[i]) * sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v; gamma1 *= 1.0/ratio[type[i]]; gamma2 *= 1.0/sqrt(ratio[type[i]]) * tsqrt; temperature->remove_bias(i,v[i]); if (v[i][0] != 0.0) f[i][0] += gamma1*v[i][0] + gamma2*(random->uniform()-0.5); if (v[i][1] != 0.0) f[i][1] += gamma1*v[i][1] + gamma2*(random->uniform()-0.5); if (v[i][2] != 0.0) f[i][2] += gamma1*v[i][2] + gamma2*(random->uniform()-0.5); temperature->restore_bias(i,v[i]); } } } } else { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { gamma1 = gfactor1[type[i]]; gamma2 = gfactor2[type[i]] * tsqrt; f[i][0] += gamma1*v[i][0] + gamma2*(random->uniform()-0.5); f[i][1] += gamma1*v[i][1] + gamma2*(random->uniform()-0.5); f[i][2] += gamma1*v[i][2] + gamma2*(random->uniform()-0.5); } } } else if (which == BIAS) { double tmp = temperature->compute_scalar(); for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { gamma1 = gfactor1[type[i]]; gamma2 = gfactor2[type[i]] * tsqrt; temperature->remove_bias(i,v[i]); if (v[i][0] != 0.0) f[i][0] += gamma1*v[i][0] + gamma2*(random->uniform()-0.5); if (v[i][1] != 0.0) f[i][1] += gamma1*v[i][1] + gamma2*(random->uniform()-0.5); if (v[i][2] != 0.0) f[i][2] += gamma1*v[i][2] + gamma2*(random->uniform()-0.5); temperature->restore_bias(i,v[i]); } } } } } /* ---------------------------------------------------------------------- */ void FixLangevin::post_force_tally() { double gamma1,gamma2; // reallocate flangevin if necessary if (atom->nmax > nmax) { memory->destroy_2d_double_array(flangevin); nmax = atom->nmax; flangevin = memory->create_2d_double_array(nmax,3,"langevin:flangevin"); } double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; double delta = update->ntimestep - update->beginstep; delta /= update->endstep - update->beginstep; double t_target = t_start + delta * (t_stop-t_start); double tsqrt = sqrt(t_target); // apply damping and thermostat to appropriate atoms // for BIAS: // calculate temperature since some computes require temp // computed on current nlocal atoms to remove bias // test v = 0 since some computes mask non-participating atoms via v = 0 // and added force has extra term not multiplied by v = 0 if (rmass) { double boltz = force->boltz; double dt = update->dt; double mvv2e = force->mvv2e; double ftm2v = force->ftm2v; if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { gamma1 = -rmass[i] / t_period / ftm2v; gamma2 = sqrt(rmass[i]) * sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v; gamma1 *= 1.0/ratio[type[i]]; gamma2 *= 1.0/sqrt(ratio[type[i]]) * tsqrt; flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5); flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5); flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5); f[i][0] += flangevin[i][0]; f[i][1] += flangevin[i][1]; f[i][2] += flangevin[i][2]; } } } else if (which == BIAS) { double tmp = temperature->compute_scalar(); for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { gamma1 = -rmass[i] / t_period / ftm2v; gamma2 = sqrt(rmass[i]) * sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v; gamma1 *= 1.0/ratio[type[i]]; gamma2 *= 1.0/sqrt(ratio[type[i]]) * tsqrt; temperature->remove_bias(i,v[i]); flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5); flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5); flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5); if (v[i][0] != 0.0) f[i][0] += flangevin[i][0]; else flangevin[i][0] = 0; if (v[i][1] != 0.0) f[i][1] += flangevin[i][1]; else flangevin[i][1] = 0; if (v[i][2] != 0.0) f[i][2] += flangevin[i][2]; else flangevin[i][2] = 0; temperature->restore_bias(i,v[i]); } } } } else { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { gamma1 = gfactor1[type[i]]; gamma2 = gfactor2[type[i]] * tsqrt; flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5); flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5); flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5); f[i][0] += flangevin[i][0]; f[i][1] += flangevin[i][1]; f[i][2] += flangevin[i][2]; } } } else if (which == BIAS) { double tmp = temperature->compute_scalar(); for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { gamma1 = gfactor1[type[i]]; gamma2 = gfactor2[type[i]] * tsqrt; temperature->remove_bias(i,v[i]); flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5); flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5); flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5); if (v[i][0] != 0.0) f[i][0] += flangevin[i][0]; else flangevin[i][0] = 0.0; if (v[i][1] != 0.0) f[i][1] += flangevin[i][1]; else flangevin[i][1] = 0.0; if (v[i][2] != 0.0) f[i][2] += flangevin[i][2]; else flangevin[i][2] = 0.0; temperature->restore_bias(i,v[i]); } } } } } /* ---------------------------------------------------------------------- tally energy transfer to thermal reservoir ------------------------------------------------------------------------- */ void FixLangevin::end_of_step() { if (!tally) return; double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; energy_onestep = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) energy_onestep += flangevin[i][0]*v[i][0] + flangevin[i][1]*v[i][1] + flangevin[i][2]*v[i][2]; energy += energy_onestep*update->dt; } /* ---------------------------------------------------------------------- */ void FixLangevin::reset_target(double t_new) { t_start = t_stop = t_new; } /* ---------------------------------------------------------------------- */ void FixLangevin::reset_dt() { if (atom->mass) { for (int i = 1; i <= atom->ntypes; i++) { gfactor2[i] = sqrt(atom->mass[i]) * sqrt(24.0*force->boltz/t_period/update->dt/force->mvv2e) / force->ftm2v; gfactor2[i] *= 1.0/sqrt(ratio[i]); } } } /* ---------------------------------------------------------------------- */ int FixLangevin::modify_param(int narg, char **arg) { if (strcmp(arg[0],"temp") == 0) { if (narg < 2) error->all("Illegal fix_modify command"); delete [] id_temp; int n = strlen(arg[1]) + 1; id_temp = new char[n]; strcpy(id_temp,arg[1]); int icompute = modify->find_compute(id_temp); if (icompute < 0) error->all("Could not find fix_modify temperature ID"); temperature = modify->compute[icompute]; if (temperature->tempflag == 0) error->all("Fix_modify temperature ID does not compute temperature"); if (temperature->igroup != igroup && comm->me == 0) error->warning("Group for fix_modify temp != fix group"); return 2; } return 0; } /* ---------------------------------------------------------------------- */ double FixLangevin::compute_scalar() { if (!tally) return 0.0; // capture the very first energy transfer to thermal reservoir double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; if (update->ntimestep == update->beginstep) { energy_onestep = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) energy_onestep += flangevin[i][0]*v[i][0] + flangevin[i][1]*v[i][1] + flangevin[i][2]*v[i][2]; energy = 0.5*energy_onestep*update->dt; } double energy_me = energy - 0.5*energy_onestep*update->dt; double energy_all; MPI_Allreduce(&energy_me,&energy_all,1,MPI_DOUBLE,MPI_SUM,world); return -energy_all; } /* ---------------------------------------------------------------------- memory usage of tally array ------------------------------------------------------------------------- */ double FixLangevin::memory_usage() { if (!tally) return 0.0; double bytes = atom->nmax*3 * sizeof(double); return bytes; }