/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Trung Dac Nguyen (ORNL) ------------------------------------------------------------------------- */ #include "math.h" #include "stdio.h" #include "stdlib.h" #include "pair_dpd_gpu.h" #include "atom.h" #include "atom_vec.h" #include "comm.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "integrate.h" #include "memory.h" #include "error.h" #include "neigh_request.h" #include "random_mars.h" #include "universe.h" #include "update.h" #include "domain.h" #include "string.h" #include "gpu_extra.h" using namespace LAMMPS_NS; // External functions from cuda library for atom decomposition int dpd_gpu_init(const int ntypes, double **cutsq, double **host_a0, double **host_gamma, double **host_sigma, double **host_cut, double *special_lj, bool tstat_only, const int inum, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen); void dpd_gpu_clear(); int ** dpd_gpu_compute_n(const int ago, const int inum_full, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial, tagint **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success, double **host_v, const double dtinvsqrt, const int seed, const int timestep, double *boxlo, double *prd); void dpd_gpu_compute(const int ago, const int inum_full, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success, tagint *tag, double **host_v, const double dtinvsqrt, const int seed, const int timestep, const int nlocal, double *boxlo, double *prd); double dpd_gpu_bytes(); #define EPSILON 1.0e-10 //#define _USE_UNIFORM_SARU_LCG //#define _USE_UNIFORM_SARU_TEA8 //#define _USE_GAUSSIAN_SARU_LCG #if !defined(_USE_UNIFORM_SARU_LCG) && !defined(_USE_UNIFORM_SARU_TEA8) && !defined(_USE_GAUSSIAN_SARU_LCG) #define _USE_UNIFORM_SARU_LCG #endif // References: // 1. Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comput. Phys. Comm. 184 (2013), 1119–1128. // 2. C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Comm. 230 (2011), 7191-7201. // PRNG period = 3666320093*2^32 ~ 2^64 ~ 10^19 #define LCGA 0x4beb5d59 // Full period 32 bit LCG #define LCGC 0x2600e1f7 #define oWeylPeriod 0xda879add // Prime period 3666320093 #define oWeylOffset 0x8009d14b #define TWO_N32 0.232830643653869628906250e-9f /* 2^-32 */ // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns uniformly distributed random numbers u in [-1.0;1.0] // using the inherent LCG, then multiply u with sqrt(3) to "match" // with a normal random distribution. // Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12) // Curly brackets to make variables local to the scope. #ifdef _USE_UNIFORM_SARU_LCG #define numtyp double #define SQRT3 (numtyp)1.7320508075688772935274463 #define saru(seed1, seed2, seed, timestep, randnum) { \ unsigned int seed3 = seed + timestep; \ seed3^=(seed1<<7)^(seed2>>6); \ seed2+=(seed1>>4)^(seed3>>15); \ seed1^=(seed2<<9)+(seed3<<8); \ seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \ seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \ seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \ seed2+=seed1*seed3; \ seed1+=seed3 ^ (seed2>>2); \ seed2^=((signed int)seed2)>>17; \ unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \ unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \ state = state + (wstate*(wstate^0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate>>1); \ state = LCGA*state + LCGC; \ wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \ unsigned int v = (state ^ (state>>26)) + wstate; \ unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \ randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \ } #endif // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns uniformly distributed random numbers u in [-1.0;1.0] using TEA8 // then multiply u with sqrt(3) to "match" with a normal random distribution // Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12) #ifdef _USE_UNIFORM_SARU_TEA8 #define numtyp double #define SQRT3 (numtyp)1.7320508075688772935274463 #define k0 0xA341316C #define k1 0xC8013EA4 #define k2 0xAD90777D #define k3 0x7E95761E #define delta 0x9e3779b9 #define rounds 8 #define saru(seed1, seed2, seed, timestep, randnum) { \ unsigned int seed3 = seed + timestep; \ seed3^=(seed1<<7)^(seed2>>6); \ seed2+=(seed1>>4)^(seed3>>15); \ seed1^=(seed2<<9)+(seed3<<8); \ seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \ seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \ seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \ seed2+=seed1*seed3; \ seed1+=seed3 ^ (seed2>>2); \ seed2^=((signed int)seed2)>>17; \ unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \ unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \ state = state + (wstate*(wstate^0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate>>1); \ unsigned int sum = 0; \ for (int i=0; i < rounds; i++) { \ sum += delta; \ state += ((wstate<<4) + k0)^(wstate + sum)^((wstate>>5) + k1); \ wstate += ((state<<4) + k2)^(state + sum)^((state>>5) + k3); \ } \ unsigned int v = (state ^ (state>>26)) + wstate; \ unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \ randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \ } #endif // specifically implemented for steps = 1; high = 1.0; low = -1.0 // returns two uniformly distributed random numbers r1 and r2 in [-1.0;1.0], // and uses the polar method (Marsaglia's) to transform to a normal random value // This is used to compared with CPU DPD using RandMars::gaussian() #ifdef _USE_GAUSSIAN_SARU_LCG #define numtyp double #define saru(seed1, seed2, seed, timestep, randnum) { \ unsigned int seed3 = seed + timestep; \ seed3^=(seed1<<7)^(seed2>>6); \ seed2+=(seed1>>4)^(seed3>>15); \ seed1^=(seed2<<9)+(seed3<<8); \ seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \ seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \ seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \ seed2+=seed1*seed3; \ seed1+=seed3 ^ (seed2>>2); \ seed2^=((signed int)seed2)>>17; \ unsigned int state=0x12345678; \ unsigned int wstate=12345678; \ state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \ wstate = (state + seed2) ^ (((signed int)state)>>8); \ state = state + (wstate*(wstate^0xdddf97f5)); \ wstate = 0xABCB96F7 + (wstate>>1); \ unsigned int v, s; \ numtyp r1, r2, rsq; \ while (1) { \ state = LCGA*state + LCGC; \ wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \ v = (state ^ (state>>26)) + wstate; \ s = (signed int)((v^(v>>20))*0x6957f5a7); \ r1 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \ state = LCGA*state + LCGC; \ wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \ v = (state ^ (state>>26)) + wstate; \ s = (signed int)((v^(v>>20))*0x6957f5a7); \ r2 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \ rsq = r1 * r1 + r2 * r2; \ if (rsq < (numtyp)1.0) break; \ } \ numtyp fac = sqrt((numtyp)-2.0*log(rsq)/rsq); \ randnum = r2*fac; \ } #endif /* ---------------------------------------------------------------------- */ PairDPDGPU::PairDPDGPU(LAMMPS *lmp) : PairDPD(lmp), gpu_mode(GPU_FORCE) { respa_enable = 0; reinitflag = 0; cpu_time = 0.0; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairDPDGPU::~PairDPDGPU() { dpd_gpu_clear(); } /* ---------------------------------------------------------------------- */ void PairDPDGPU::compute(int eflag, int vflag) { if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; int nall = atom->nlocal + atom->nghost; int inum, host_start; double dtinvsqrt = 1.0/sqrt(update->dt); bool success = true; int *ilist, *numneigh, **firstneigh; if (gpu_mode != GPU_FORCE) { inum = atom->nlocal; firstneigh = dpd_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, domain->sublo, domain->subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success, atom->v, dtinvsqrt, seed, update->ntimestep, domain->boxlo, domain->prd); } else { inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; dpd_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success, atom->tag, atom->v, dtinvsqrt, seed, update->ntimestep, atom->nlocal, domain->boxlo, domain->prd); } if (!success) error->one(FLERR,"Insufficient memory on accelerator"); if (host_startnewton_pair) error->all(FLERR,"Cannot use newton pair with dpd/gpu pair style"); // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double mcut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { mcut = init_one(i,j); mcut *= mcut; if (mcut > maxcut) maxcut = mcut; cutsq[i][j] = cutsq[j][i] = mcut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; int maxspecial=0; if (atom->molecular) maxspecial=atom->maxspecial; int success = dpd_gpu_init(atom->ntypes+1, cutsq, a0, gamma, sigma, cut, force->special_lj, false, atom->nlocal, atom->nlocal+atom->nghost, 300, maxspecial, cell_size, gpu_mode, screen); GPU_EXTRA::check_flag(success,error,world); if (gpu_mode == GPU_FORCE) { int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; } } /* ---------------------------------------------------------------------- */ double PairDPDGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + dpd_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairDPDGPU::cpu_compute(int start, int inum, int eflag, int vflag, int *ilist, int *numneigh, int **firstneigh) { int i,j,ii,jj,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double vxtmp,vytmp,vztmp,delvx,delvy,delvz; double rsq,r,rinv,dot,wd,randnum,factor_dpd; int *jlist; tagint itag,jtag; double **x = atom->x; double **v = atom->v; double **f = atom->f; int *type = atom->type; tagint *tag = atom->tag; double *special_lj = force->special_lj; double dtinvsqrt = 1.0/sqrt(update->dt); int timestep = (int)update->ntimestep; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; vxtmp = v[i][0]; vytmp = v[i][1]; vztmp = v[i][2]; itype = type[i]; itag = tag[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_dpd = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; jtag = tag[j]; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); if (r < EPSILON) continue; // r can be 0.0 in DPD systems rinv = 1.0/r; delvx = vxtmp - v[j][0]; delvy = vytmp - v[j][1]; delvz = vztmp - v[j][2]; dot = delx*delvx + dely*delvy + delz*delvz; wd = 1.0 - r/cut[itype][jtype]; unsigned int tag1=itag, tag2=jtag; if (tag1 > tag2) { tag1 = jtag; tag2 = itag; } randnum = 0.0; saru(tag1, tag2, seed, timestep, randnum); // conservative force = a0 * wd // drag force = -gamma * wd^2 * (delx dot delv) / r // random force = sigma * wd * rnd * dtinvsqrt; fpair = a0[itype][jtype]*wd; fpair -= gamma[itype][jtype]*wd*wd*dot*rinv; fpair += sigma[itype][jtype]*wd*randnum*dtinvsqrt; fpair *= factor_dpd*rinv; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (eflag) { // unshifted eng of conservative term: // evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/cut[itype][jtype]); // eng shifted to 0.0 at cutoff evdwl = 0.5*a0[itype][jtype]*cut[itype][jtype] * wd*wd; evdwl *= factor_dpd; } if (evflag) ev_tally_full(i,evdwl,0.0,fpair,delx,dely,delz); } } } }