/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "math.h" #include "improper_ring_omp.h" #include "atom.h" #include "comm.h" #include "neighbor.h" #include "domain.h" #include "force.h" #include "update.h" #include "error.h" #include "suffix.h" using namespace LAMMPS_NS; #define TOLERANCE 0.05 #define SMALL 0.001 /* ---------------------------------------------------------------------- */ ImproperRingOMP::ImproperRingOMP(class LAMMPS *lmp) : ImproperRing(lmp), ThrOMP(lmp,THR_IMPROPER) { suffix_flag |= Suffix::OMP; } /* ---------------------------------------------------------------------- */ void ImproperRingOMP::compute(int eflag, int vflag) { if (eflag || vflag) { ev_setup(eflag,vflag); } else evflag = 0; const int nall = atom->nlocal + atom->nghost; const int nthreads = comm->nthreads; const int inum = neighbor->nimproperlist; #if defined(_OPENMP) #pragma omp parallel default(none) shared(eflag,vflag) #endif { int ifrom, ito, tid; loop_setup_thr(ifrom, ito, tid, inum, nthreads); ThrData *thr = fix->get_thr(tid); ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr); if (evflag) { if (eflag) { if (force->newton_bond) eval<1,1,1>(ifrom, ito, thr); else eval<1,1,0>(ifrom, ito, thr); } else { if (force->newton_bond) eval<1,0,1>(ifrom, ito, thr); else eval<1,0,0>(ifrom, ito, thr); } } else { if (force->newton_bond) eval<0,0,1>(ifrom, ito, thr); else eval<0,0,0>(ifrom, ito, thr); } reduce_thr(this, eflag, vflag, thr); } // end of omp parallel region } template void ImproperRingOMP::eval(int nfrom, int nto, ThrData * const thr) { /* Be careful!: "chi" is the equilibrium angle in radians. */ int i1,i2,i3,i4,n,type; double eimproper; /* Compatibility variables. */ double vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z; double f1[3], f3[3], f4[3]; /* Actual computation variables. */ int at1[3], at2[3], at3[3], icomb; double bvec1x[3], bvec1y[3], bvec1z[3], bvec2x[3], bvec2y[3], bvec2z[3], bvec1n[3], bvec2n[3], bend_angle[3]; double angle_summer, angfac, cfact1, cfact2, cfact3; double cjiji, ckjji, ckjkj, fix, fiy, fiz, fjx, fjy, fjz, fkx, fky, fkz; eimproper = 0.0; const double * const * const x = atom->x; double * const * const f = thr->get_f(); const int * const * const improperlist = neighbor->improperlist; const int nlocal = atom->nlocal; /* A description of the potential can be found in Macromolecules 35, pp. 1463-1472 (2002). */ for (n = nfrom; n < nto; n++) { /* Take the ids of the atoms contributing to the improper potential. */ i1 = improperlist[n][0]; /* Atom "1" of Figure 1 from the above reference.*/ i2 = improperlist[n][1]; /* Atom "2" ... */ i3 = improperlist[n][2]; /* Atom "3" ... */ i4 = improperlist[n][3]; /* Atom "9" ... */ type = improperlist[n][4]; /* Calculate the necessary variables for LAMMPS implementation. if (evflag) ev_tally(i1,i2,i3,i4,nlocal,newton_bond,eimproper,f1,f3,f4, vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z); Although, they are irrelevant to the calculation of the potential, we keep them for maximal compatibility. */ vb1x = x[i1][0] - x[i2][0]; vb1y = x[i1][1] - x[i2][1]; vb1z = x[i1][2] - x[i2][2]; vb2x = x[i3][0] - x[i2][0]; vb2y = x[i3][1] - x[i2][1]; vb2z = x[i3][2] - x[i2][2]; vb3x = x[i4][0] - x[i3][0]; vb3y = x[i4][1] - x[i3][1]; vb3z = x[i4][2] - x[i3][2]; /* Pass the atom tags to form the necessary combinations. */ at1[0] = i1; at2[0] = i2; at3[0] = i4; /* ids: 1-2-9 */ at1[1] = i1; at2[1] = i2; at3[1] = i3; /* ids: 1-2-3 */ at1[2] = i4; at2[2] = i2; at3[2] = i3; /* ids: 9-2-3 */ /* Initialize the sum of the angles differences. */ angle_summer = 0.0; /* Take a loop over the three angles, defined by each triad: */ for (icomb = 0; icomb < 3; icomb ++) { /* Bond vector connecting the first and the second atom. */ bvec1x[icomb] = x[at2[icomb]][0] - x[at1[icomb]][0]; bvec1y[icomb] = x[at2[icomb]][1] - x[at1[icomb]][1]; bvec1z[icomb] = x[at2[icomb]][2] - x[at1[icomb]][2]; /* also calculate the norm of the vector: */ bvec1n[icomb] = sqrt( bvec1x[icomb]*bvec1x[icomb] + bvec1y[icomb]*bvec1y[icomb] + bvec1z[icomb]*bvec1z[icomb]); /* Bond vector connecting the second and the third atom. */ bvec2x[icomb] = x[at3[icomb]][0] - x[at2[icomb]][0]; bvec2y[icomb] = x[at3[icomb]][1] - x[at2[icomb]][1]; bvec2z[icomb] = x[at3[icomb]][2] - x[at2[icomb]][2]; /* also calculate the norm of the vector: */ bvec2n[icomb] = sqrt( bvec2x[icomb]*bvec2x[icomb] + bvec2y[icomb]*bvec2y[icomb] + bvec2z[icomb]*bvec2z[icomb]); /* Calculate the bending angle of the atom triad: */ bend_angle[icomb] = ( bvec2x[icomb]*bvec1x[icomb] + bvec2y[icomb]*bvec1y[icomb] + bvec2z[icomb]*bvec1z[icomb]); bend_angle[icomb] /= (bvec1n[icomb] * bvec2n[icomb]); if (bend_angle[icomb] > 1.0) bend_angle[icomb] -= SMALL; if (bend_angle[icomb] < -1.0) bend_angle[icomb] += SMALL; /* Append the current angle to the sum of angle differences. */ angle_summer += (bend_angle[icomb] - chi[type]); } if (EFLAG) eimproper = (1.0/6.0) *k[type] * pow(angle_summer,6.0); /* printf("The tags: %d-%d-%d-%d, of type %d .\n",atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4],type); // printf("The coordinates of the first: %f, %f, %f.\n", x[i1][0], x[i1][1], x[i1][2]); // printf("The coordinates of the second: %f, %f, %f.\n", x[i2][0], x[i2][1], x[i2][2]); // printf("The coordinates of the third: %f, %f, %f.\n", x[i3][0], x[i3][1], x[i3][2]); // printf("The coordinates of the fourth: %f, %f, %f.\n", x[i4][0], x[i4][1], x[i4][2]); printf("The angles are: %f / %f / %f equilibrium: %f.\n", bend_angle[0], bend_angle[1], bend_angle[2],chi[type]); printf("The energy of the improper: %f with prefactor %f.\n", eimproper,(1.0/6.0)*k[type]); printf("The sum of the angles: %f.\n", angle_summer); */ /* Force calculation acting on all atoms. Calculate the derivatives of the potential. */ angfac = k[type] * pow(angle_summer,5.0); f1[0] = 0.0; f1[1] = 0.0; f1[2] = 0.0; f3[0] = 0.0; f3[1] = 0.0; f3[2] = 0.0; f4[0] = 0.0; f4[1] = 0.0; f4[2] = 0.0; /* Take a loop over the three angles, defined by each triad: */ for (icomb = 0; icomb < 3; icomb ++) { /* Calculate the squares of the distances. */ cjiji = bvec1n[icomb] * bvec1n[icomb]; ckjkj = bvec2n[icomb] * bvec2n[icomb]; ckjji = bvec2x[icomb] * bvec1x[icomb] + bvec2y[icomb] * bvec1y[icomb] + bvec2z[icomb] * bvec1z[icomb] ; cfact1 = angfac / (sqrt(ckjkj * cjiji)); cfact2 = ckjji / ckjkj; cfact3 = ckjji / cjiji; /* Calculate the force acted on the thrid atom of the angle. */ fkx = cfact2 * bvec2x[icomb] - bvec1x[icomb]; fky = cfact2 * bvec2y[icomb] - bvec1y[icomb]; fkz = cfact2 * bvec2z[icomb] - bvec1z[icomb]; /* Calculate the force acted on the first atom of the angle. */ fix = bvec2x[icomb] - cfact3 * bvec1x[icomb]; fiy = bvec2y[icomb] - cfact3 * bvec1y[icomb]; fiz = bvec2z[icomb] - cfact3 * bvec1z[icomb]; /* Finally, calculate the force acted on the middle atom of the angle.*/ fjx = - fix - fkx; fjy = - fiy - fky; fjz = - fiz - fkz; /* Consider the appropriate scaling of the forces: */ fix *= cfact1; fiy *= cfact1; fiz *= cfact1; fjx *= cfact1; fjy *= cfact1; fjz *= cfact1; fkx *= cfact1; fky *= cfact1; fkz *= cfact1; if (at1[icomb] == i1) {f1[0] += fix; f1[1] += fiy; f1[2] += fiz;} else if (at2[icomb] == i1) {f1[0] += fjx; f1[1] += fjy; f1[2] += fjz;} else if (at3[icomb] == i1) {f1[0] += fkx; f1[1] += fky; f1[2] += fkz;} if (at1[icomb] == i3) {f3[0] += fix; f3[1] += fiy; f3[2] += fiz;} else if (at2[icomb] == i3) {f3[0] += fjx; f3[1] += fjy; f3[2] += fjz;} else if (at3[icomb] == i3) {f3[0] += fkx; f3[1] += fky; f3[2] += fkz;} if (at1[icomb] == i4) {f4[0] += fix; f4[1] += fiy; f4[2] += fiz;} else if (at2[icomb] == i4) {f4[0] += fjx; f4[1] += fjy; f4[2] += fjz;} else if (at3[icomb] == i4) {f4[0] += fkx; f4[1] += fky; f4[2] += fkz;} /* Store the contribution to the global arrays: */ /* Take the id of the atom from the at1[icomb] element, i1 = at1[icomb]. */ if (NEWTON_BOND || at1[icomb] < nlocal) { f[at1[icomb]][0] += fix; f[at1[icomb]][1] += fiy; f[at1[icomb]][2] += fiz; } /* Take the id of the atom from the at2[icomb] element, i2 = at2[icomb]. */ if (NEWTON_BOND || at2[icomb] < nlocal) { f[at2[icomb]][0] += fjx; f[at2[icomb]][1] += fjy; f[at2[icomb]][2] += fjz; } /* Take the id of the atom from the at3[icomb] element, i3 = at3[icomb]. */ if (NEWTON_BOND || at3[icomb] < nlocal) { f[at3[icomb]][0] += fkx; f[at3[icomb]][1] += fky; f[at3[icomb]][2] += fkz; } } if (EVFLAG) ev_tally_thr(this,i1,i2,i3,i4,nlocal,NEWTON_BOND,eimproper,f1,f3,f4, vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,thr); } }