// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "pair_sph_lj.h" #include #include "atom.h" #include "force.h" #include "neigh_list.h" #include "memory.h" #include "error.h" #include "domain.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairSPHLJ::PairSPHLJ(LAMMPS *lmp) : Pair(lmp) { restartinfo = 0; } /* ---------------------------------------------------------------------- */ PairSPHLJ::~PairSPHLJ() { if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(cut); memory->destroy(viscosity); } } /* ---------------------------------------------------------------------- */ void PairSPHLJ::compute(int eflag, int vflag) { int i, j, ii, jj, inum, jnum, itype, jtype; double xtmp, ytmp, ztmp, delx, dely, delz, fpair; int *ilist, *jlist, *numneigh, **firstneigh; double vxtmp, vytmp, vztmp, imass, jmass, fi, fj, fvisc, h, ih, ihsq, ihcub; double rsq, wfd, delVdotDelR, mu, deltaE, ci, cj, lrc; ev_init(eflag, vflag); double **v = atom->vest; double **x = atom->x; double **f = atom->f; double *rho = atom->rho; double *mass = atom->mass; double *desph = atom->desph; double *esph = atom->esph; double *cv = atom->cv; double *drho = atom->drho; int *type = atom->type; int nlocal = atom->nlocal; int newton_pair = force->newton_pair; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; vxtmp = v[i][0]; vytmp = v[i][1]; vztmp = v[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; imass = mass[itype]; // compute pressure of particle i with LJ EOS LJEOS2(rho[i], esph[i], cv[i], &fi, &ci); fi /= (rho[i] * rho[i]); //printf("fi = %f\n", fi); for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; jtype = type[j]; jmass = mass[jtype]; if (rsq < cutsq[itype][jtype]) { h = cut[itype][jtype]; ih = 1.0 / h; ihsq = ih * ih; ihcub = ihsq * ih; wfd = h - sqrt(rsq); if (domain->dimension == 3) { // Lucy Kernel, 3d // Note that wfd, the derivative of the weight function with respect to r, // is lacking a factor of r. // The missing factor of r is recovered by // (1) using delV . delX instead of delV . (delX/r) and // (2) using f[i][0] += delx * fpair instead of f[i][0] += (delx/r) * fpair wfd = -25.066903536973515383e0 * wfd * wfd * ihsq * ihsq * ihsq * ih; } else { // Lucy Kernel, 2d wfd = -19.098593171027440292e0 * wfd * wfd * ihsq * ihsq * ihsq; } // function call to LJ EOS LJEOS2(rho[j], esph[j], cv[j], &fj, &cj); fj /= (rho[j] * rho[j]); // apply long-range correction to model a LJ fluid with cutoff // this implies that the modelled LJ fluid has cutoff == SPH cutoff lrc = - 11.1701 * (ihcub * ihcub * ihcub - 1.5 * ihcub); fi += lrc; fj += lrc; // dot product of velocity delta and distance vector delVdotDelR = delx * (vxtmp - v[j][0]) + dely * (vytmp - v[j][1]) + delz * (vztmp - v[j][2]); // artificial viscosity (Monaghan 1992) if (delVdotDelR < 0.) { mu = h * delVdotDelR / (rsq + 0.01 * h * h); fvisc = -viscosity[itype][jtype] * (ci + cj) * mu / (rho[i] + rho[j]); } else { fvisc = 0.; } // total pair force & thermal energy increment fpair = -imass * jmass * (fi + fj + fvisc) * wfd; deltaE = -0.5 * fpair * delVdotDelR; f[i][0] += delx * fpair; f[i][1] += dely * fpair; f[i][2] += delz * fpair; // and change in density drho[i] += jmass * delVdotDelR * wfd; // change in thermal energy desph[i] += deltaE; if (newton_pair || j < nlocal) { f[j][0] -= delx * fpair; f[j][1] -= dely * fpair; f[j][2] -= delz * fpair; desph[j] += deltaE; drho[j] += imass * delVdotDelR * wfd; } if (evflag) ev_tally(i, j, nlocal, newton_pair, 0.0, 0.0, fpair, delx, dely, delz); } } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairSPHLJ::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag, n + 1, n + 1, "pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq, n + 1, n + 1, "pair:cutsq"); memory->create(cut, n + 1, n + 1, "pair:cut"); memory->create(viscosity, n + 1, n + 1, "pair:viscosity"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairSPHLJ::settings(int narg, char **/*arg*/) { if (narg != 0) error->all(FLERR, "Illegal number of arguments for pair_style sph/lj"); } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairSPHLJ::coeff(int narg, char **arg) { if (narg != 4) error->all(FLERR, "Incorrect args for pair_style sph/lj coefficients"); if (!allocated) allocate(); int ilo, ihi, jlo, jhi; utils::bounds(FLERR,arg[0], 1, atom->ntypes, ilo, ihi, error); utils::bounds(FLERR,arg[1], 1, atom->ntypes, jlo, jhi, error); double viscosity_one = utils::numeric(FLERR,arg[2],false,lmp); double cut_one = utils::numeric(FLERR,arg[3],false,lmp); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { viscosity[i][j] = viscosity_one; printf("setting cut[%d][%d] = %f\n", i, j, cut_one); cut[i][j] = cut_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairSPHLJ::init_one(int i, int j) { if (setflag[i][j] == 0) { error->all(FLERR,"All pair sph/lj coeffs are not set"); } cut[j][i] = cut[i][j]; viscosity[j][i] = viscosity[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- */ double PairSPHLJ::single(int /*i*/, int /*j*/, int /*itype*/, int /*jtype*/, double /*rsq*/, double /*factor_coul*/, double /*factor_lj*/, double &fforce) { fforce = 0.0; return 0.0; } /*double PairSPHLJ::LJEOS2(double rho, double e, double cv) { double T = e / cv; if (T < 1.e-2) T = 1.e-2; //printf("%f %f\n", T, rho); double iT = 0.1e1 / T; //double itpow1_4 = exp(0.25 * log(iT)); //pow(iT, 0.1e1 / 0.4e1); double itpow1_4 = pow(iT, 0.1e1 / 0.4e1); double x = rho * itpow1_4; double xsq = x * x; double xpow3 = xsq * x; double xpow4 = xsq * xsq; double xpow9 = xpow3 * xpow3 * xpow3; return (0.1e1 + rho * (0.3629e1 + 0.7264e1 * x + 0.104925e2 * xsq + 0.11460e2 * xpow3 + 0.21760e1 * xpow9 - itpow1_4 * itpow1_4 * (0.5369e1 + 0.13160e2 * x + 0.18525e2 * xsq - 0.17076e2 * xpow3 + 0.9320e1 * xpow4) + iT * (-0.3492e1 + 0.18698e2 * x - 0.35505e2 * xsq + 0.31816e2 * xpow3 - 0.11195e2 * xpow4)) * itpow1_4) * rho * T; }*/ /* --------------------------------------------------------------------------------------------- */ /* Lennard-Jones EOS, Francis H. Ree "Analytic representation of thermodynamic data for the Lennard‐Jones fluid", Journal of Chemical Physics 73 pp. 5401-5403 (1980) */ void PairSPHLJ::LJEOS2(double rho, double e, double cv, double *p, double *c) { double T = e/cv; double beta = 1.0 / T; double beta_sqrt = sqrt(beta); double x = rho * sqrt(beta_sqrt); double xsq = x * x; double xpow3 = xsq * x; double xpow4 = xsq * xsq; /* differential of Helmholtz free energy w.r.t. x */ double diff_A_NkT = 3.629 + 7.264*x - beta*(3.492 - 18.698*x + 35.505*xsq - 31.816*xpow3 + 11.195*xpow4) - beta_sqrt*(5.369 + 13.16*x + 18.525*xsq - 17.076*xpow3 + 9.32*xpow4) + 10.4925*xsq + 11.46*xpow3 + 2.176*xpow4*xpow4*x; /* differential of Helmholtz free energy w.r.t. x^2 */ double d2A_dx2 = 7.264 + 20.985*x \ + beta*(18.698 - 71.01*x + 95.448*xsq - 44.78*xpow3)\ - beta_sqrt*(13.16 + 37.05*x - 51.228*xsq + 37.28*xpow3)\ + 34.38*xsq + 19.584*xpow4*xpow4; // p = rho k T * (1 + rho * d(A/(NkT))/drho) // dx/drho = rho/x *p = rho * T * (1.0 + diff_A_NkT * x); // pressure double csq = T * (1.0 + 2.0 * diff_A_NkT * x + d2A_dx2 * x * x); // soundspeed squared if (csq > 0.0) { *c = sqrt(csq); // soundspeed } else { *c = 0.0; } } /* ------------------------------------------------------------------------------ */ /* Jirí Kolafa, Ivo Nezbeda * "The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state", * Fluid Phase Equilibria 100 pp. 1-34 (1994) */ /*double PairSPHLJ::LJEOS2(double rho, double e, double cv) { double T = e / cv; double sT = sqrt(T); double isT = 1.0 / sT; double dC = -0.063920968 * log(T) + 0.011117524 / T - 0.076383859 / sT + 1.080142248 + 0.000693129 * sT; double eta = 3.141592654 / 6. * rho * (dC * dC * dC); double zHS = (1 + eta * (1 + eta * (1 - eta / 1.5 * (1 + eta)))) / ((1. - eta) * (1. - eta) * (1. - eta)); double BC = (((((-0.58544978 * isT + 0.43102052) * isT + .87361369) * isT - 4.13749995) * isT + 2.90616279) * isT - 7.02181962) / T + 0.02459877; double gammaBH = 1.92907278; double sum = ((2.01546797 * 2 + rho * ((-28.17881636) * 3 + rho * (28.28313847 * 4 + rho * (-10.42402873) * 5))) + (-19.58371655 * 2 + rho * (+75.62340289 * 3 + rho * ((-120.70586598) * 4 + rho * (+93.92740328 * 5 + rho * (-27.37737354) * 6)))) / sqrt(T) + ((29.34470520 * 2 + rho * ((-112.35356937) * 3 + rho * (+170.64908980 * 4 + rho * ((-123.06669187) * 5 + rho * 34.42288969 * 6)))) + ((-13.37031968) * 2 + rho * (65.38059570 * 3 + rho * ((-115.09233113) * 4 + rho * (88.91973082 * 5 + rho * (-25.62099890) * 6)))) / T) / T) * rho * rho; return ((zHS + BC / exp(gammaBH * rho * rho) * rho * (1 - 2 * gammaBH * rho * rho)) * T + sum) * rho; } */