/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_bond_local.h" #include "atom.h" #include "atom_vec.h" #include "bond.h" #include "comm.h" #include "domain.h" #include "error.h" #include "force.h" #include "input.h" #include "math_extra.h" #include "memory.h" #include "molecule.h" #include "update.h" #include "variable.h" #include #include using namespace LAMMPS_NS; static constexpr int DELTA = 10000; enum { DIST, DX, DY, DZ, VELVIB, OMEGA, ENGTRANS, ENGVIB, ENGROT, ENGPOT, FORCE, FX, FY, FZ, VARIABLE, BN }; /* ---------------------------------------------------------------------- */ ComputeBondLocal::ComputeBondLocal(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), bstyle(nullptr), vvar(nullptr), dstr(nullptr), vstr(nullptr), vlocal(nullptr), alocal(nullptr) { if (narg < 4) error->all(FLERR, "Illegal compute bond/local command"); if (atom->avec->bonds_allow == 0) error->all(FLERR, "Compute bond/local used when bonds are not allowed"); local_flag = 1; comm_forward = 3; // style args nvalues = narg - 3; bstyle = new int[nvalues]; bindex = new int[nvalues]; vstr = new char *[nvalues]; vvar = new int[nvalues]; nvalues = 0; nvar = 0; int iarg; for (iarg = 3; iarg < narg; iarg++) { if (strcmp(arg[iarg], "dist") == 0) bstyle[nvalues++] = DIST; else if (strcmp(arg[iarg], "dx") == 0) bstyle[nvalues++] = DX; else if (strcmp(arg[iarg], "dy") == 0) bstyle[nvalues++] = DY; else if (strcmp(arg[iarg], "dz") == 0) bstyle[nvalues++] = DZ; else if (strcmp(arg[iarg], "engpot") == 0) bstyle[nvalues++] = ENGPOT; else if (strcmp(arg[iarg], "force") == 0) bstyle[nvalues++] = FORCE; else if (strcmp(arg[iarg], "fx") == 0) bstyle[nvalues++] = FX; else if (strcmp(arg[iarg], "fy") == 0) bstyle[nvalues++] = FY; else if (strcmp(arg[iarg], "fz") == 0) bstyle[nvalues++] = FZ; else if (strcmp(arg[iarg], "engvib") == 0) bstyle[nvalues++] = ENGVIB; else if (strcmp(arg[iarg], "engrot") == 0) bstyle[nvalues++] = ENGROT; else if (strcmp(arg[iarg], "engtrans") == 0) bstyle[nvalues++] = ENGTRANS; else if (strcmp(arg[iarg], "omega") == 0) bstyle[nvalues++] = OMEGA; else if (strcmp(arg[iarg], "velvib") == 0) bstyle[nvalues++] = VELVIB; else if (strncmp(arg[iarg], "v_", 2) == 0) { bstyle[nvalues++] = VARIABLE; vstr[nvar] = utils::strdup(&arg[iarg][2]); nvar++; } else if (utils::strmatch(arg[iarg], "^b\\d+$")) { // b1, b2, b3, ... bN int n = std::stoi(&arg[iarg][1]); if (n <= 0) error->all(FLERR, "Invalid keyword {} in compute bond/local command", arg[iarg]); bstyle[nvalues] = BN; bindex[nvalues++] = n - 1; } else break; } // optional args setflag = 0; dstr = nullptr; while (iarg < narg) { if (strcmp(arg[iarg], "set") == 0) { setflag = 1; if (iarg + 3 > narg) utils::missing_cmd_args(FLERR, "compute bond/local set", error); if (strcmp(arg[iarg + 1], "dist") == 0) { delete[] dstr; dstr = utils::strdup(arg[iarg + 2]); } else error->all(FLERR, "Unknown compute bond/local set keyword: {}", arg[iarg + 2]); iarg += 3; } else error->all(FLERR, "Unknown compute bond/local keyword: {}", arg[iarg]); } // error check if (nvar) { if (!setflag) error->all(FLERR, "Compute bond/local variable requires a set variable"); for (int i = 0; i < nvar; i++) { vvar[i] = input->variable->find(vstr[i]); if (vvar[i] < 0) error->all(FLERR, "Variable name {} for compute bond/local does not exist", vstr[i]); if (!input->variable->equalstyle(vvar[i])) error->all(FLERR, "Variable {} for compute bond/local is invalid style", vstr[i]); } if (dstr) { dvar = input->variable->find(dstr); if (dvar < 0) error->all(FLERR, "Variable name for compute bond/local does not exist"); if (!input->variable->internalstyle(dvar)) error->all(FLERR, "Variable for compute bond/local is invalid style"); } } else if (setflag) error->all(FLERR, "Compute bond/local set used with without a variable"); // set singleflag if need to call bond->single() // set velflag if compute any quantities based on velocities singleflag = 0; velflag = 0; for (int i = 0; i < nvalues; i++) { if (bstyle[i] == ENGPOT || bstyle[i] == FORCE || bstyle[i] == FX || bstyle[i] == FY || bstyle[i] == FZ || bstyle[i] == BN) singleflag = 1; if (bstyle[i] == VELVIB || bstyle[i] == OMEGA || bstyle[i] == ENGTRANS || bstyle[i] == ENGVIB || bstyle[i] == ENGROT) velflag = 1; } // initialize output if (nvalues == 1) size_local_cols = 0; else size_local_cols = nvalues; nmax = 0; vlocal = nullptr; alocal = nullptr; } /* ---------------------------------------------------------------------- */ ComputeBondLocal::~ComputeBondLocal() { delete[] bstyle; delete[] bindex; for (int i = 0; i < nvar; i++) delete[] vstr[i]; delete[] vstr; delete[] vvar; delete[] dstr; memory->destroy(vlocal); memory->destroy(alocal); } /* ---------------------------------------------------------------------- */ void ComputeBondLocal::init() { if (force->bond == nullptr) error->all(FLERR, "No bond style is defined for compute bond/local"); for (int i = 0; i < nvalues; i++) if (bstyle[i] == BN && bindex[i] >= force->bond->single_extra) error->all(FLERR, "Bond style does not have extra field requested by compute bond/local"); if (nvar) { for (int i = 0; i < nvar; i++) { vvar[i] = input->variable->find(vstr[i]); if (vvar[i] < 0) error->all(FLERR, "Variable name for compute bond/local does not exist"); } if (dstr) { dvar = input->variable->find(dstr); if (dvar < 0) error->all(FLERR, "Variable name for compute bond/local does not exist"); } } // set ghostvelflag if need to acquire ghost atom velocities if (velflag && !comm->ghost_velocity) ghostvelflag = 1; else ghostvelflag = 0; // do initial memory allocation so that memory_usage() is correct initflag = 1; ncount = compute_bonds(0); initflag = 0; if (ncount > nmax) reallocate(ncount); size_local_rows = ncount; } /* ---------------------------------------------------------------------- */ void ComputeBondLocal::compute_local() { invoked_local = update->ntimestep; // count local entries and compute bond info ncount = compute_bonds(0); if (ncount > nmax) reallocate(ncount); size_local_rows = ncount; ncount = compute_bonds(1); } /* ---------------------------------------------------------------------- count bonds and compute bond info on this proc only count bond once if newton_bond is off all atoms in interaction must be in group all atoms in interaction must be known to proc if bond is deleted (type = 0), do not count if bond is turned off (type < 0), still count if flag is set, compute requested info about bond if bond is turned off (type < 0), energy = 0.0 ------------------------------------------------------------------------- */ int ComputeBondLocal::compute_bonds(int flag) { int i, m, nb, atom1, atom2, imol, iatom, btype, ivar; tagint tagprev; double dx, dy, dz, rsq; double mass1, mass2, masstotal, invmasstotal; double xcm[3], vcm[3]; double delr1[3], delr2[3], delv1[3], delv2[3]; double r12[3], vpar1, vpar2; double vvib, vrotsq; double inertia, omegasq; double mvv2e; double engpot, engtrans, engvib, engrot, fbond; double *ptr; double **x = atom->x; double **v = atom->v; int *type = atom->type; double *mass = atom->mass; double *rmass = atom->rmass; tagint *tag = atom->tag; int *num_bond = atom->num_bond; tagint **bond_atom = atom->bond_atom; int **bond_type = atom->bond_type; int *mask = atom->mask; int *molindex = atom->molindex; int *molatom = atom->molatom; Molecule **onemols = atom->avec->onemols; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; int molecular = atom->molecular; Bond *bond = force->bond; // communicate ghost velocities if needed if (ghostvelflag && !initflag) comm->forward_comm(this); // loop over all atoms and their bonds m = 0; for (atom1 = 0; atom1 < nlocal; atom1++) { if (!(mask[atom1] & groupbit)) continue; if (molecular == Atom::MOLECULAR) nb = num_bond[atom1]; else { if (molindex[atom1] < 0) continue; imol = molindex[atom1]; iatom = molatom[atom1]; nb = onemols[imol]->num_bond[iatom]; } for (i = 0; i < nb; i++) { if (molecular == Atom::MOLECULAR) { btype = bond_type[atom1][i]; atom2 = atom->map(bond_atom[atom1][i]); } else { tagprev = tag[atom1] - iatom - 1; btype = onemols[imol]->bond_type[iatom][i]; atom2 = atom->map(onemols[imol]->bond_atom[iatom][i] + tagprev); } if (atom2 < 0 || !(mask[atom2] & groupbit)) continue; if (newton_bond == 0 && tag[atom1] > tag[atom2]) continue; if (btype == 0) continue; if (!flag) { m++; continue; } dx = x[atom1][0] - x[atom2][0]; dy = x[atom1][1] - x[atom2][1]; dz = x[atom1][2] - x[atom2][2]; domain->minimum_image(dx, dy, dz); rsq = dx * dx + dy * dy + dz * dz; if (btype == 0) { fbond = 0.0; } else { if (singleflag) engpot = bond->single(btype, rsq, atom1, atom2, fbond); else fbond = engpot = 0.0; engvib = engrot = engtrans = omegasq = vvib = 0.0; if (velflag) { if (rmass) { mass1 = rmass[atom1]; mass2 = rmass[atom2]; } else { mass1 = mass[type[atom1]]; mass2 = mass[type[atom2]]; } masstotal = mass1 + mass2; invmasstotal = 1.0 / (masstotal); xcm[0] = (mass1 * x[atom1][0] + mass2 * x[atom2][0]) * invmasstotal; xcm[1] = (mass1 * x[atom1][1] + mass2 * x[atom2][1]) * invmasstotal; xcm[2] = (mass1 * x[atom1][2] + mass2 * x[atom2][2]) * invmasstotal; vcm[0] = (mass1 * v[atom1][0] + mass2 * v[atom2][0]) * invmasstotal; vcm[1] = (mass1 * v[atom1][1] + mass2 * v[atom2][1]) * invmasstotal; vcm[2] = (mass1 * v[atom1][2] + mass2 * v[atom2][2]) * invmasstotal; engtrans = 0.5 * masstotal * MathExtra::lensq3(vcm); // r12 = unit bond vector from atom1 to atom2 MathExtra::sub3(x[atom2], x[atom1], r12); MathExtra::norm3(r12); // delr = vector from COM to each atom // delv = velocity of each atom relative to COM MathExtra::sub3(x[atom1], xcm, delr1); MathExtra::sub3(x[atom2], xcm, delr2); MathExtra::sub3(v[atom1], vcm, delv1); MathExtra::sub3(v[atom2], vcm, delv2); // vpar = component of delv parallel to bond vector vpar1 = MathExtra::dot3(delv1, r12); vpar2 = MathExtra::dot3(delv2, r12); engvib = 0.5 * (mass1 * vpar1 * vpar1 + mass2 * vpar2 * vpar2); // vvib = relative velocity of 2 atoms along bond direction // vvib < 0 for 2 atoms moving towards each other // vvib > 0 for 2 atoms moving apart vvib = vpar2 - vpar1; // vrotsq = tangential speed squared of atom1 only // omegasq = omega squared, and is the same for atom1 and atom2 inertia = mass1 * MathExtra::lensq3(delr1) + mass2 * MathExtra::lensq3(delr2); vrotsq = MathExtra::lensq3(delv1) - vpar1 * vpar1; omegasq = vrotsq / MathExtra::lensq3(delr1); engrot = 0.5 * inertia * omegasq; // scale energies by units mvv2e = force->mvv2e; engtrans *= mvv2e; engvib *= mvv2e; engrot *= mvv2e; } if (nvalues == 1) ptr = &vlocal[m]; else ptr = alocal[m]; if (nvar) { ivar = 0; if (dstr) input->variable->internal_set(dvar, sqrt(rsq)); } // to make sure dx, dy and dz are always from the lower to the higher id double directionCorrection = tag[atom1] > tag[atom2] ? -1.0 : 1.0; for (int n = 0; n < nvalues; n++) { switch (bstyle[n]) { case DIST: ptr[n] = sqrt(rsq); break; case DX: ptr[n] = dx * directionCorrection; break; case DY: ptr[n] = dy * directionCorrection; break; case DZ: ptr[n] = dz * directionCorrection; break; case ENGPOT: ptr[n] = engpot; break; case FORCE: ptr[n] = sqrt(rsq) * fbond; break; case FX: ptr[n] = dx * fbond; break; case FY: ptr[n] = dy * fbond; break; case FZ: ptr[n] = dz * fbond; break; case ENGVIB: ptr[n] = engvib; break; case ENGROT: ptr[n] = engrot; break; case ENGTRANS: ptr[n] = engtrans; break; case OMEGA: ptr[n] = sqrt(omegasq); break; case VELVIB: ptr[n] = vvib; break; case VARIABLE: ptr[n] = input->variable->compute_equal(vvar[ivar]); ivar++; break; case BN: ptr[n] = bond->svector[bindex[n]]; break; } } } m++; } } return m; } /* ---------------------------------------------------------------------- */ int ComputeBondLocal::pack_forward_comm(int n, int *list, double *buf, int /*pbc_flag*/, int * /*pbc*/) { int i, j, m; double **v = atom->v; m = 0; for (i = 0; i < n; i++) { j = list[i]; buf[m++] = v[j][0]; buf[m++] = v[j][1]; buf[m++] = v[j][2]; } return m; } /* ---------------------------------------------------------------------- */ void ComputeBondLocal::unpack_forward_comm(int n, int first, double *buf) { int i, m, last; double **v = atom->v; m = 0; last = first + n; for (i = first; i < last; i++) { v[i][0] = buf[m++]; v[i][1] = buf[m++]; v[i][2] = buf[m++]; } } /* ---------------------------------------------------------------------- */ void ComputeBondLocal::reallocate(int n) { // grow vector_local or array_local while (nmax < n) nmax += DELTA; if (nvalues == 1) { memory->destroy(vlocal); memory->create(vlocal, nmax, "bond/local:vector_local"); vector_local = vlocal; } else { memory->destroy(alocal); memory->create(alocal, nmax, nvalues, "bond/local:array_local"); array_local = alocal; } } /* ---------------------------------------------------------------------- memory usage of local data ------------------------------------------------------------------------- */ double ComputeBondLocal::memory_usage() { double bytes = (double) nmax * nvalues * sizeof(double); return bytes; }