/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Andres Jaramillo-Botero and Julius Su (Caltech) ------------------------------------------------------------------------- */ #include "math.h" #include "stdio.h" #include "stdlib.h" #include "string.h" #include "pair_eff_cut.h" #include "pair_eff_inline.h" #include "atom.h" #include "update.h" #include "min.h" #include "domain.h" #include "comm.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define MAX(a,b) ((a) > (b) ? (a) : (b)) /* ---------------------------------------------------------------------- */ PairEffCut::PairEffCut(LAMMPS *lmp) : Pair(lmp) { single_enable = 0; nmax = 0; min_eradius = NULL; min_erforce = NULL; } /* ---------------------------------------------------------------------- */ PairEffCut::~PairEffCut() { memory->sfree(min_eradius); memory->sfree(min_erforce); if (allocated) { memory->destroy_2d_int_array(setflag); memory->destroy_2d_double_array(cutsq); memory->destroy_2d_double_array(cut); } } /* ---------------------------------------------------------------------- */ void PairEffCut::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; double qtmp,xtmp,ytmp,ztmp,delx,dely,delz,ecoul,energy; double fpair,fx,fy,fz,e1rforce,e2rforce,e1rvirial,e2rvirial; double rsq,rc,forcecoul,factor_coul; int *ilist,*jlist,*numneigh,**firstneigh; ecoul = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; double **x = atom->x; double **f = atom->f; double *q = atom->q; double *erforce = atom->erforce; double *eradius = atom->eradius; int *spin = atom->spin; int *type = atom->type; int nlocal = atom->nlocal; int nall = nlocal + atom->nghost; double *special_coul = force->special_coul; int newton_pair = force->newton_pair; double qqrd2e = force->qqrd2e; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; qtmp = q[i]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; // add electron kinetic energy if (spin[i] != 0) { e1rforce = energy = 0; energy = 1.5 / (eradius[i] * eradius[i]); e1rforce = 3.0 / (eradius[i] * eradius[i] * eradius[i]); erforce[i] += e1rforce; // electronic ke accumulates into ecoul (pot) if (eflag) ecoul = energy; // KE e-wavefunction if (evflag) { ev_tally_eff(i,i,nlocal,newton_pair,ecoul,0.0); if (flexible_pressure_flag) // only on electron ev_tally_eff(i,i,nlocal,newton_pair,0.0,e1rforce*eradius[i]); } } for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; rc = sqrt(rsq); if (j < nall) factor_coul = 1.0; else { factor_coul = special_coul[j/nall]; j %= nall; } jtype = type[j]; double taper = sqrt(cutsq[itype][jtype]); if (rsq < cutsq[itype][jtype]) { // nuclei-nuclei interaction if (spin[i] == 0 && spin[j] == 0) { energy = fx = fy = fz = 0; double qxq = qqrd2e*qtmp*q[j]; forcecoul = qxq/rsq; double dist = rc / taper; double spline = cutoff(dist); double dspline = dcutoff(dist) / taper; energy = factor_coul*qxq/rc; fpair = forcecoul*spline-energy*dspline; fpair = qqrd2e*fpair/rc; energy = spline*energy; fx = delx*fpair; fy = dely*fpair; fz = delz*fpair; f[i][0] += fx; f[i][1] += fy; f[i][2] += fz; if (newton_pair || j < nlocal) { f[j][0] -= fx; f[j][1] -= fy; f[j][2] -= fz; } if (eflag) ecoul = energy; // Electrostatics:N-N if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair,0.0,ecoul, fx,fy,fz,delx,dely,delz); } // I is nucleus, J is electron if (spin[i] == 0 && spin[j] != 0) { energy = fpair = e1rforce = fx = fy = fz = e1rvirial = 0; ElecNucElec(-q[i],rc,eradius[j],&energy,&fpair,&e1rforce,i,j); double dist = rc / taper; double spline = cutoff(dist); double dspline = dcutoff(dist) / taper; fpair = qqrd2e * (fpair * spline - energy * dspline); energy = qqrd2e * spline * energy; e1rforce = qqrd2e * spline * e1rforce; erforce[j] += e1rforce; e1rvirial = eradius[j] * e1rforce; SmallRForce(delx,dely,delz,rc,fpair,&fx,&fy,&fz); f[i][0] += fx; f[i][1] += fy; f[i][2] += fz; if (newton_pair || j < nlocal) { f[j][0] -= fx; f[j][1] -= fy; f[j][2] -= fz; } if (eflag) ecoul = energy; // Electrostatics:N-e if (evflag) { ev_tally_xyz(i,j,nlocal,newton_pair,0.0,ecoul, fx,fy,fz,delx,dely,delz); if (flexible_pressure_flag) // only on electron ev_tally_eff(j,j,nlocal,newton_pair,0.0,e1rvirial); } } // I is electon, J is nucleus if (spin[i] != 0 && spin[j] == 0) { energy = fpair = e1rforce = fx = fy = fz = e1rvirial = 0; ElecNucElec(-q[j],rc,eradius[i],&energy,&fpair,&e1rforce,j,i); double dist = rc / taper; double spline = cutoff(dist); double dspline = dcutoff(dist) / taper; fpair = qqrd2e * (fpair * spline - energy * dspline); energy = qqrd2e * spline * energy; e1rforce = qqrd2e * spline * e1rforce; erforce[i] += e1rforce; e1rvirial = eradius[i] * e1rforce; SmallRForce(delx,dely,delz,rc,fpair,&fx,&fy,&fz); f[i][0] += fx; f[i][1] += fy; f[i][2] += fz; if (newton_pair || j < nlocal) { f[j][0] -= fx; f[j][1] -= fy; f[j][2] -= fz; } if (eflag) ecoul = energy; //Electrostatics-e-N if (evflag) { ev_tally_xyz(i,j,nlocal,newton_pair,0.0,ecoul, fx,fy,fz,delx,dely,delz); if (flexible_pressure_flag) // only on electron ev_tally_eff(i,i,nlocal,newton_pair,0.0,e1rvirial); } } // electron-electron interaction if (spin[i] && spin[j]) { energy = fpair = fx = fy= fz = e1rforce = e2rforce = e1rvirial = e2rvirial = 0.0; ElecElecElec(rc,eradius[i],eradius[j],&energy,&fpair, &e1rforce,&e2rforce,i,j); double s_energy, s_fpair, s_e1rforce, s_e2rforce; s_energy = s_fpair = s_e1rforce = s_e2rforce = 0.0; // as with the electron ke, // the Pauli term is also accumulated into ecoul (pot) PauliElecElec(spin[j] == spin[i],rc,eradius[i],eradius[j], &s_energy,&s_fpair,&s_e1rforce,&s_e2rforce,i,j); double dist = rc / taper; double spline = cutoff(dist); double dspline = dcutoff(dist) / taper; // apply spline cutoff s_fpair = qqrd2e * (s_fpair * spline - s_energy * dspline); s_energy = qqrd2e * spline * s_energy; fpair = qqrd2e * (fpair * spline - energy * dspline); energy = qqrd2e * spline * energy; e1rforce = qqrd2e * spline * (e1rforce + s_e1rforce); e2rforce = qqrd2e * spline * (e2rforce + s_e2rforce); // Cartesian and radial forces SmallRForce(delx, dely, delz, rc, fpair + s_fpair, &fx, &fy, &fz); erforce[i] += e1rforce; erforce[j] += e2rforce; // radial virials e1rvirial = eradius[i] * e1rforce; e2rvirial = eradius[j] * e2rforce; f[i][0] += fx; f[i][1] += fy; f[i][2] += fz; if (newton_pair || j < nlocal) { f[j][0] -= fx; f[j][1] -= fy; f[j][2] -= fz; } if (eflag) ecoul = energy + s_energy; // Electrostatics+Pauli: e-e if (evflag) { ev_tally_xyz(i,j,nlocal,newton_pair,0.0, ecoul,fx,fy,fz,delx,dely,delz); if (flexible_pressure_flag) // on both electrons ev_tally_eff(i,j,nlocal,newton_pair,0.0,e1rvirial+e2rvirial); } } } } // limit the electron size for periodic systems, to max=half-box-size // limit_size_stiffness for electrons if (spin[i] && limit_size_flag) { double half_box_length=0, dr, k=1.0; e1rforce = energy = 0; if (domain->xperiodic == 1 || domain->yperiodic == 1 || domain->zperiodic == 1) { delx = domain->boxhi[0]-domain->boxlo[0]; dely = domain->boxhi[1]-domain->boxlo[1]; delz = domain->boxhi[2]-domain->boxlo[2]; half_box_length = 0.5 * MIN(delx, MIN(dely, delz)); if (eradius[i] > half_box_length) { dr = eradius[i]-half_box_length; energy=0.5*k*dr*dr; e1rforce=-k*dr; } } erforce[i] += e1rforce; // constraint radial energy accumulated as ecoul if (eflag) ecoul = energy; // Radial constraint energy if (evflag) { ev_tally_eff(i,i,nlocal,newton_pair,ecoul,0.0); if (flexible_pressure_flag) // only on electron ev_tally_eff(i,i,nlocal,newton_pair,0.0,eradius[i]*e1rforce); } } } if (vflag_fdotr) { virial_compute(); if (flexible_pressure_flag) virial_eff_compute(); } } /* ---------------------------------------------------------------------- eff-specific contribution to global virial ------------------------------------------------------------------------- */ void PairEffCut::virial_eff_compute() { double *eradius = atom->eradius; double *erforce = atom->erforce; double e_virial; int *spin = atom->spin; // sum over force on all particles including ghosts if (neighbor->includegroup == 0) { int nall = atom->nlocal + atom->nghost; for (int i = 0; i < nall; i++) { if (spin[i]) { e_virial = erforce[i]*eradius[i]/3; virial[0] += e_virial; virial[1] += e_virial; virial[2] += e_virial; } } // neighbor includegroup flag is set // sum over force on initial nfirst particles and ghosts } else { int nall = atom->nfirst; for (int i = 0; i < nall; i++) { if (spin[i]) { e_virial = erforce[i]*eradius[i]/3; virial[0] += e_virial; virial[1] += e_virial; virial[2] += e_virial; } } nall = atom->nlocal + atom->nghost; for (int i = atom->nlocal; i < nall; i++) { if (spin[i]) { e_virial = erforce[i]*eradius[i]/3; virial[0] += e_virial; virial[1] += e_virial; virial[2] += e_virial; } } } } /* ---------------------------------------------------------------------- tally eng_vdwl and virial into per-atom accumulators for virial radial electronic contributions ------------------------------------------------------------------------- */ void PairEffCut::ev_tally_eff(int i, int j, int nlocal, int newton_pair, double ecoul, double e_virial) { double ecoulhalf,epairhalf; double partial_evirial = e_virial/3.0; int *spin = atom->spin; // accumulate electronic wavefunction ke and radial constraint as ecoul if (eflag_either) { if (eflag_global) { ecoulhalf = 0.5*ecoul; if (i < nlocal) eng_coul += ecoulhalf; if (j < nlocal) eng_coul += ecoulhalf; } if (eflag_atom) { epairhalf = 0.5 * ecoul; if (i < nlocal) eatom[i] += epairhalf; if (j < nlocal) eatom[j] += epairhalf; } } if (vflag_either) { if (vflag_global) { if (spin[i] && i < nlocal) { virial[0] += 0.5*partial_evirial; virial[1] += 0.5*partial_evirial; virial[2] += 0.5*partial_evirial; } if (spin[j] && j < nlocal) { virial[0] += 0.5*partial_evirial; virial[1] += 0.5*partial_evirial; virial[2] += 0.5*partial_evirial; } } if (vflag_atom) { if (spin[i]) { if (newton_pair || i < nlocal) { vatom[i][0] += 0.5*partial_evirial; vatom[i][1] += 0.5*partial_evirial; vatom[i][2] += 0.5*partial_evirial; } } if (spin[j]) { if (newton_pair || j < nlocal) { vatom[j][0] += 0.5*partial_evirial; vatom[j][1] += 0.5*partial_evirial; vatom[j][2] += 0.5*partial_evirial; } } } } } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairEffCut::allocate() { allocated = 1; int n = atom->ntypes; setflag = memory->create_2d_int_array(n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; cutsq = memory->create_2d_double_array(n+1,n+1,"pair:cutsq"); cut = memory->create_2d_double_array(n+1,n+1,"pair:cut"); } /* --------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairEffCut::settings(int narg, char **arg) { if (narg != 1 && narg != 3) error->all("Illegal pair_style command"); if (narg == 1) { cut_global = force->numeric(arg[0]); limit_size_flag = 0; flexible_pressure_flag = 0; } else if (narg == 3) { cut_global = force->numeric(arg[0]); limit_size_flag = force->inumeric(arg[1]); flexible_pressure_flag = force->inumeric(arg[2]); } // reset cutoffs that have been explicitly set if (allocated) { int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i+1; j <= atom->ntypes; j++) if (setflag[i][j]) cut[i][j] = cut_global; } } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairEffCut::coeff(int narg, char **arg) { if (narg < 2 || narg > 3) error->all("Incorrect args for pair coefficients"); if (!allocated) allocate(); int ilo,ihi,jlo,jhi; force->bounds(arg[0],atom->ntypes,ilo,ihi); force->bounds(arg[1],atom->ntypes,jlo,jhi); double cut_one = cut_global; if (narg == 3) cut_one = atof(arg[2]); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { cut[i][j] = cut_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all("Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairEffCut::init_style() { // error and warning checks if (!atom->q_flag || !atom->spin_flag || !atom->eradius_flag || !atom->erforce_flag) error->all("Pair eff/cut requires atom attributes " "q, spin, eradius, erforce"); if (comm->ghost_velocity == 0) error->all("Pair eff/cut requires ghost atoms store velocity"); // add hook to minimizer for eradius and erforce if (update->whichflag == 2) int ignore = update->minimize->request(this,1,0.01); // need a half neigh list and optionally a granular history neigh list int irequest = neighbor->request(this); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairEffCut::init_one(int i, int j) { if (setflag[i][j] == 0) cut[i][j] = mix_distance(cut[i][i],cut[j][j]); return cut[i][j]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairEffCut::write_restart(FILE *fp) { write_restart_settings(fp); int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j],sizeof(int),1,fp); if (setflag[i][j]) fwrite(&cut[i][j],sizeof(double),1,fp); } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairEffCut::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); if (setflag[i][j]) { if (me == 0) fread(&cut[i][j],sizeof(double),1,fp); MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world); } } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairEffCut::write_restart_settings(FILE *fp) { fwrite(&cut_global,sizeof(double),1,fp); fwrite(&offset_flag,sizeof(int),1,fp); fwrite(&mix_flag,sizeof(int),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairEffCut::read_restart_settings(FILE *fp) { if (comm->me == 0) { fread(&cut_global,sizeof(double),1,fp); fread(&offset_flag,sizeof(int),1,fp); fread(&mix_flag,sizeof(int),1,fp); } MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world); MPI_Bcast(&offset_flag,1,MPI_INT,0,world); MPI_Bcast(&mix_flag,1,MPI_INT,0,world); } /* ---------------------------------------------------------------------- returns pointers to the log() of electron radius and corresponding force minimizer operates on log(radius) so radius never goes negative these arrays are stored locally by pair style ------------------------------------------------------------------------- */ void PairEffCut::min_xf_pointers(int ignore, double **xextra, double **fextra) { // grow arrays if necessary // need to be atom->nmax in length if (atom->nmax > nmax) { memory->sfree(min_eradius); memory->sfree(min_erforce); nmax = atom->nmax; min_eradius = (double *) memory->smalloc(nmax*sizeof(double), "pair:min_eradius"); min_erforce = (double *) memory->smalloc(nmax*sizeof(double), "pair:min_erforce"); } *xextra = min_eradius; *fextra = min_erforce; } /* ---------------------------------------------------------------------- minimizer requests the log() of electron radius and corresponding force calculate and store in min_eradius and min_erforce ------------------------------------------------------------------------- */ void PairEffCut::min_xf_get(int ignore) { double *eradius = atom->eradius; double *erforce = atom->erforce; int *spin = atom->spin; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (spin[i]) { min_eradius[i] = log(eradius[i]); min_erforce[i] = eradius[i]*erforce[i]; } else min_eradius[i] = min_erforce[i] = 0.0; } /* ---------------------------------------------------------------------- minimizer has changed the log() of electron radius propagate the change back to eradius ------------------------------------------------------------------------- */ void PairEffCut::min_x_set(int ignore) { double *eradius = atom->eradius; int *spin = atom->spin; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (spin[i]) eradius[i] = exp(min_eradius[i]); } /* ---------------------------------------------------------------------- memory usage of local atom-based arrays ------------------------------------------------------------------------- */ double PairEffCut::memory_usage() { double bytes = maxeatom * sizeof(double); bytes += maxvatom*6 * sizeof(double); bytes += 2 * nmax * sizeof(double); return bytes; }