# Demonstrate how to load a model from the python side. # This is essentially the same as in.mliap.pytorch.Ta06A # except that python is the driving program, and lammps # is in library mode. before_loading =\ """# Demonstrate MLIAP/PyTorch interface to linear SNAP potential # Initialize simulation variable nsteps index 100 variable nrep equal 4 variable a equal 3.316 units metal # generate the box and atom positions using a BCC lattice variable nx equal ${nrep} variable ny equal ${nrep} variable nz equal ${nrep} boundary p p p lattice bcc $a region box block 0 ${nx} 0 ${ny} 0 ${nz} create_box 1 box create_atoms 1 box mass 1 180.88 # choose potential # DATE: 2014-09-05 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: Thompson, Swiler, Trott, Foiles and Tucker, arxiv.org, 1409.3880 (2014) # Definition of SNAP potential Ta_Cand06A # Assumes 1 LAMMPS atom type variable zblcutinner equal 4 variable zblcutouter equal 4.8 variable zblz equal 73 # Specify hybrid with SNAP, ZBL pair_style hybrid/overlay & zbl ${zblcutinner} ${zblcutouter} & mliap model mliappy LATER & descriptor sna Ta06A.mliap.descriptor pair_coeff 1 1 zbl ${zblz} ${zblz} pair_coeff * * mliap Ta """ after_loading =\ """ # Setup output compute eatom all pe/atom compute energy all reduce sum c_eatom compute satom all stress/atom NULL compute str all reduce sum c_satom[1] c_satom[2] c_satom[3] variable press equal (c_str[1]+c_str[2]+c_str[3])/(3*vol) thermo_style custom step temp epair c_energy etotal press v_press thermo 10 thermo_modify norm yes # Set up NVE run timestep 0.5e-3 neighbor 1.0 bin neigh_modify once no every 1 delay 0 check yes # Run MD velocity all create 300.0 4928459 loop geom fix 1 all nve run ${nsteps} """ import lammps lmp = lammps.lammps(cmdargs=['-echo','both']) # this commmand must be run before the MLIAP object is declared in lammps. lmp.mliappy.activate() # setup the simulation and declare an empty model # by specifying model filename as "LATER" lmp.commands_string(before_loading) # define the PyTorch model by loading a pkl file. # this could also be done in other ways. import pickle with open('Ta06A.mliap.pytorch.model.pkl','rb') as pfile: model = pickle.load(pfile) # connect the PyTorch model to the mliap pair style lmp.mliappy.load_model(model) # run the simulation with the mliap pair style lmp.commands_string(after_loading)