/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Mark Stevens (SNL) Andy Ballard (U Maryland) for Nose/Hoover chains ------------------------------------------------------------------------- */ #include "string.h" #include "stdlib.h" #include "math.h" #include "fix_nvt.h" #include "atom.h" #include "force.h" #include "comm.h" #include "group.h" #include "update.h" #include "respa.h" #include "modify.h" #include "compute.h" #include "error.h" using namespace LAMMPS_NS; enum{NOBIAS,BIAS}; /* ---------------------------------------------------------------------- */ FixNVT::FixNVT(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg) { if (narg < 6) error->all("Illegal fix nvt command"); restart_global = 1; time_integrate = 1; scalar_flag = 1; scalar_vector_freq = 1; extscalar = 1; t_start = atof(arg[3]); t_stop = atof(arg[4]); double t_period = atof(arg[5]); drag = 0.0; chain = 1; int iarg = 6; while (iarg < narg) { if (strcmp(arg[iarg],"drag") == 0) { if (iarg+2 > narg) error->all("Illegal fix nvt command"); drag = atof(arg[iarg+1]); if (drag < 0.0) error->all("Illegal fix nvt command"); iarg += 2; } else if (strcmp(arg[iarg],"chain") == 0) { if (iarg+2 > narg) error->all("Illegal fix nvt command"); if (strcmp(arg[iarg+1],"yes") == 0) chain = 1; else if (strcmp(arg[iarg+1],"no") == 0) chain = 0; else error->all("Illegal fix nvt command"); iarg += 2; } else error->all("Illegal fix nvt command"); } // error checks // convert input period to frequency if (t_start < 0.0 || t_stop <= 0.0) error->all("Target T for fix nvt cannot be 0.0"); if (t_period <= 0.0) error->all("Fix nvt period must be > 0.0"); t_freq = 1.0 / t_period; // create a new compute temp style // id = fix-ID + temp, compute group = fix group int n = strlen(id) + 6; id_temp = new char[n]; strcpy(id_temp,id); strcat(id_temp,"_temp"); char **newarg = new char*[3]; newarg[0] = id_temp; newarg[1] = group->names[igroup]; if (strcmp(style,"nvt") == 0) newarg[2] = (char *) "temp"; else if (strcmp(style,"nvt/asphere") == 0) newarg[2] = (char *) "temp/asphere"; else if (strcmp(style,"nvt/sllod") == 0) newarg[2] = (char *) "temp/deform"; else if (strcmp(style,"nvt/sphere") == 0) newarg[2] = (char *) "temp/sphere"; modify->add_compute(3,newarg); delete [] newarg; tflag = 1; // Nose/Hoover temp init eta = eta_dot = 0.0; eta2 = eta2_dot = 0.0; } /* ---------------------------------------------------------------------- */ FixNVT::~FixNVT() { // delete temperature if fix created it if (tflag) modify->delete_compute(id_temp); delete [] id_temp; } /* ---------------------------------------------------------------------- */ int FixNVT::setmask() { int mask = 0; mask |= INITIAL_INTEGRATE; mask |= FINAL_INTEGRATE; mask |= THERMO_ENERGY; mask |= INITIAL_INTEGRATE_RESPA; mask |= FINAL_INTEGRATE_RESPA; return mask; } /* ---------------------------------------------------------------------- */ void FixNVT::init() { int icompute = modify->find_compute(id_temp); if (icompute < 0) error->all("Temperature ID for fix nvt does not exist"); temperature = modify->compute[icompute]; if (temperature->tempbias) which = BIAS; else which = NOBIAS; // set timesteps and frequencies dtv = update->dt; dtf = 0.5 * update->dt * force->ftm2v; dthalf = 0.5 * update->dt; dt4 = 0.25 * update->dt; dt8 = 0.125 * update->dt; drag_factor = 1.0 - (update->dt * t_freq * drag); if (strcmp(update->integrate_style,"respa") == 0) { nlevels_respa = ((Respa *) update->integrate)->nlevels; step_respa = ((Respa *) update->integrate)->step; } } /* ---------------------------------------------------------------------- */ void FixNVT::setup(int vflag) { t_target = t_start; // used by compute_scalar() t_current = temperature->compute_scalar(); } /* ---------------------------------------------------------------------- */ void FixNVT::initial_integrate(int vflag) { double dtfm; double delta = update->ntimestep - update->beginstep; delta /= update->endstep - update->beginstep; t_target = t_start + delta * (t_stop-t_start); // update eta, eta_dot, eta2, eta2_dot int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; if (chain) { eta2_dot += (temperature->dof * eta_dot*eta_dot - t_freq*t_freq) * dt4; factor2 = exp(-dt8*eta2_dot); eta_dot *= factor2; f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dt4; eta_dot *= drag_factor; eta_dot *= factor2; eta += dthalf*eta_dot; eta2 += dthalf*eta2_dot; } else { f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dthalf; eta_dot *= drag_factor; eta += dtv*eta_dot; } factor = exp(-dthalf*eta_dot); // update v and x of only atoms in group double **x = atom->x; double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; if (rmass) { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / rmass[i]; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / rmass[i]; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; temperature->restore_bias(i,v[i]); x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } } } else { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; temperature->restore_bias(i,v[i]); x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } } } if (chain) { eta_dot *= factor2; f_eta = t_freq*t_freq * (factor * factor * t_current/t_target - 1.0); eta_dot += f_eta * dt4; eta_dot *= factor2; eta2_dot += (temperature->dof * eta_dot*eta_dot - t_freq*t_freq) * dt4; } } /* ---------------------------------------------------------------------- */ void FixNVT::final_integrate() { double dtfm; // update v of only atoms in group double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; if (chain) factor = 1.0; if (rmass) { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / rmass[i] * factor; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / rmass[i] * factor; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; temperature->restore_bias(i,v[i]); } } } } else { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]] * factor; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / mass[type[i]] * factor; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; temperature->restore_bias(i,v[i]); } } } } // compute current T t_current = temperature->compute_scalar(); // update eta, eta_dot, eta2, eta2_dot // chains require additional velocity update and recompute of current T if (chain) { eta2_dot += (temperature->dof * eta_dot*eta_dot - t_freq*t_freq) * dt4; factor2 = exp(-dt8*eta2_dot); eta_dot *= factor2; f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dt4; eta_dot *= drag_factor; eta_dot *= factor2; eta += dthalf*eta_dot; eta2 += dthalf*eta2_dot; factor = exp(-dthalf*eta_dot); if (rmass) { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0] * factor; v[i][1] = v[i][1] * factor; v[i][2] = v[i][2] * factor; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0] * factor; v[i][1] = v[i][1] * factor; v[i][2] = v[i][2] * factor; temperature->restore_bias(i,v[i]); } } } } else { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0] * factor; v[i][1] = v[i][1] * factor; v[i][2] = v[i][2] * factor; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0] * factor; v[i][1] = v[i][1] * factor; v[i][2] = v[i][2] * factor; temperature->restore_bias(i,v[i]); } } } } t_current = temperature->compute_scalar(); eta_dot *= factor2; f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta * dt4; eta_dot *= factor2; eta2_dot += (temperature->dof * eta_dot*eta_dot - t_freq*t_freq) * dt4; } else { f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dthalf; eta_dot *= drag_factor; } } /* ---------------------------------------------------------------------- */ void FixNVT::initial_integrate_respa(int vflag, int ilevel, int flag) { if (flag) return; // only used by NPT,NPH // set timesteps by level double dtfm; dtv = step_respa[ilevel]; dtf = 0.5 * step_respa[ilevel] * force->ftm2v; dthalf = 0.5 * step_respa[ilevel]; // atom quantities double **x = atom->x; double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; // outermost level - update eta_dot and apply to v with factor // all other levels - NVE update of v (factor = 1) // innermost level - also update x if (ilevel == nlevels_respa-1) { double delta = update->ntimestep - update->beginstep; delta /= update->endstep - update->beginstep; t_target = t_start + delta * (t_stop-t_start); if (chain) { eta2_dot += (temperature->dof * eta_dot*eta_dot - t_freq*t_freq) * dt4; factor2 = exp(-dt8*eta2_dot); eta_dot *= factor2; f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dt4; eta_dot *= drag_factor; eta_dot *= factor2; eta += dthalf*eta_dot; eta2 += dthalf*eta2_dot; } else { f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dthalf; eta_dot *= drag_factor; eta += dtv*eta_dot; } factor = exp(-dthalf*eta_dot); } else factor = 1.0; if (rmass) { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / rmass[i]; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / rmass[i]; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; temperature->restore_bias(i,v[i]); } } } } else { if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0]*factor + dtfm*f[i][0]; v[i][1] = v[i][1]*factor + dtfm*f[i][1]; v[i][2] = v[i][2]*factor + dtfm*f[i][2]; temperature->restore_bias(i,v[i]); } } } } if (ilevel == 0) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } } if (ilevel == nlevels_respa-1 && chain) { eta_dot *= factor2; f_eta = t_freq*t_freq * (factor * factor * t_current/t_target - 1.0); eta_dot += f_eta * dt4; eta_dot *= factor2; eta2_dot += (temperature->dof * eta_dot*eta_dot - t_freq*t_freq) * dt4; } } /* ---------------------------------------------------------------------- */ void FixNVT::final_integrate_respa(int ilevel) { // set timesteps by level double dtfm; dtf = 0.5 * step_respa[ilevel] * force->ftm2v; dthalf = 0.5 * step_respa[ilevel]; // outermost level - update eta_dot and apply to v via final_integrate() // all other levels - NVE update of v if (ilevel == nlevels_respa-1) final_integrate(); else { double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; if (rmass) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / rmass[i]; v[i][0] += dtfm*f[i][0]; v[i][1] += dtfm*f[i][1]; v[i][2] += dtfm*f[i][2]; } } } else { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] += dtfm*f[i][0]; v[i][1] += dtfm*f[i][1]; v[i][2] += dtfm*f[i][2]; } } } } } /* ---------------------------------------------------------------------- pack entire state of Fix into one write ------------------------------------------------------------------------- */ void FixNVT::write_restart(FILE *fp) { int n = 0; double list[4]; list[n++] = eta; list[n++] = eta_dot; list[n++] = eta2; list[n++] = eta2_dot; if (comm->me == 0) { int size = n * sizeof(double); fwrite(&size,sizeof(int),1,fp); fwrite(list,sizeof(double),n,fp); } } /* ---------------------------------------------------------------------- use state info from restart file to restart the Fix ------------------------------------------------------------------------- */ void FixNVT::restart(char *buf) { int n = 0; double *list = (double *) buf; eta = list[n++]; eta_dot = list[n++]; eta2 = list[n++]; eta2_dot = list[n++]; } /* ---------------------------------------------------------------------- */ int FixNVT::modify_param(int narg, char **arg) { if (strcmp(arg[0],"temp") == 0) { if (narg < 2) error->all("Illegal fix_modify command"); if (tflag) { modify->delete_compute(id_temp); tflag = 0; } delete [] id_temp; int n = strlen(arg[1]) + 1; id_temp = new char[n]; strcpy(id_temp,arg[1]); int icompute = modify->find_compute(id_temp); if (icompute < 0) error->all("Could not find fix_modify temperature ID"); temperature = modify->compute[icompute]; if (temperature->tempflag == 0) error->all("Fix_modify temperature ID does not compute temperature"); if (temperature->igroup != igroup && comm->me == 0) error->warning("Group for fix_modify temp != fix group"); return 2; } return 0; } /* ---------------------------------------------------------------------- */ void FixNVT::reset_target(double t_new) { t_start = t_stop = t_new; } /* ---------------------------------------------------------------------- */ void FixNVT::reset_dt() { dtv = update->dt; dtf = 0.5 * update->dt * force->ftm2v; dthalf = 0.5 * update->dt; dt4 = 0.25 * update->dt; dt8 = 0.125 * update->dt; drag_factor = 1.0 - (update->dt * t_freq * drag); } /* ---------------------------------------------------------------------- */ double FixNVT::compute_scalar() { double ke = temperature->dof * force->boltz * t_target; double energy = ke * (eta + 0.5*eta_dot*eta_dot/(t_freq*t_freq)); return energy; }