// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_snad_atom.h" #include "sna.h" #include "atom.h" #include "update.h" #include "modify.h" #include "neighbor.h" #include "neigh_list.h" #include "force.h" #include "pair.h" #include "comm.h" #include "memory.h" #include "error.h" #include using namespace LAMMPS_NS; ComputeSNADAtom::ComputeSNADAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), cutsq(nullptr), list(nullptr), snad(nullptr), radelem(nullptr), wjelem(nullptr), sinnerelem(nullptr), dinnerelem(nullptr) { // begin code common to all SNAP computes double rfac0, rmin0; int twojmax, switchflag, bzeroflag, bnormflag, wselfallflag; int ntypes = atom->ntypes; int nargmin = 6 + 2 * ntypes; if (narg < nargmin) error->all(FLERR, "Illegal compute {} command", style); // default values rmin0 = 0.0; switchflag = 1; bzeroflag = 1; quadraticflag = 0; chemflag = 0; bnormflag = 0; wselfallflag = 0; switchinnerflag = 0; nelements = 1; // process required arguments memory->create(radelem, ntypes + 1, "sna/atom:radelem"); // offset by 1 to match up with types memory->create(wjelem, ntypes + 1, "sna/atom:wjelem"); rcutfac = utils::numeric(FLERR, arg[3], false, lmp); rfac0 = utils::numeric(FLERR, arg[4], false, lmp); twojmax = utils::inumeric(FLERR, arg[5], false, lmp); for (int i = 0; i < ntypes; i++) radelem[i + 1] = utils::numeric(FLERR, arg[6 + i], false, lmp); for (int i = 0; i < ntypes; i++) wjelem[i + 1] = utils::numeric(FLERR, arg[6 + ntypes + i], false, lmp); // construct cutsq double cut; cutmax = 0.0; memory->create(cutsq, ntypes + 1, ntypes + 1, "sna/atom:cutsq"); for (int i = 1; i <= ntypes; i++) { cut = 2.0 * radelem[i] * rcutfac; if (cut > cutmax) cutmax = cut; cutsq[i][i] = cut * cut; for (int j = i + 1; j <= ntypes; j++) { cut = (radelem[i] + radelem[j]) * rcutfac; cutsq[i][j] = cutsq[j][i] = cut * cut; } } // set local input checks int sinnerflag = 0; int dinnerflag = 0; // process optional args int iarg = nargmin; while (iarg < narg) { if (strcmp(arg[iarg], "rmin0") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute {} command", style); rmin0 = utils::numeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "switchflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute {} command", style); switchflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "bzeroflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute {} command", style); bzeroflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "quadraticflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute {} command", style); quadraticflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "chem") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute {} command", style); chemflag = 1; memory->create(map, ntypes + 1, "compute_sna_grid:map"); nelements = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); for (int i = 0; i < ntypes; i++) { int jelem = utils::inumeric(FLERR, arg[iarg + 2 + i], false, lmp); if (jelem < 0 || jelem >= nelements) error->all(FLERR, "Illegal compute {} command", style); map[i + 1] = jelem; } iarg += 2 + ntypes; } else if (strcmp(arg[iarg], "bnormflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute {} command", style); bnormflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "wselfallflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute {} command", style); wselfallflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "switchinnerflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute {} command", style); switchinnerflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "sinner") == 0) { iarg++; if (iarg + ntypes > narg) error->all(FLERR, "Illegal compute {} command", style); memory->create(sinnerelem, ntypes + 1, "snap:sinnerelem"); for (int i = 0; i < ntypes; i++) sinnerelem[i + 1] = utils::numeric(FLERR, arg[iarg + i], false, lmp); sinnerflag = 1; iarg += ntypes; } else if (strcmp(arg[iarg], "dinner") == 0) { iarg++; if (iarg + ntypes > narg) error->all(FLERR, "Illegal compute {} command", style); memory->create(dinnerelem, ntypes + 1, "snap:dinnerelem"); for (int i = 0; i < ntypes; i++) dinnerelem[i + 1] = utils::numeric(FLERR, arg[iarg + i], false, lmp); dinnerflag = 1; iarg += ntypes; } else error->all(FLERR, "Illegal compute {} command", style); } if (switchinnerflag && !(sinnerflag && dinnerflag)) error->all( FLERR, "Illegal compute {} command: switchinnerflag = 1, missing sinner/dinner keyword", style); if (!switchinnerflag && (sinnerflag || dinnerflag)) error->all( FLERR, "Illegal compute {} command: switchinnerflag = 0, unexpected sinner/dinner keyword", style); snaptr = new SNA(lmp, rfac0, twojmax, rmin0, switchflag, bzeroflag, chemflag, bnormflag, wselfallflag, nelements, switchinnerflag); ncoeff = snaptr->ncoeff; nvalues = ncoeff; if (quadraticflag) nvalues += (ncoeff * (ncoeff + 1)) / 2; // end code common to all SNAP computes yoffset = nvalues; zoffset = 2*nvalues; size_peratom_cols = 3*nvalues*atom->ntypes; comm_reverse = size_peratom_cols; peratom_flag = 1; nmax = 0; snad = nullptr; } /* ---------------------------------------------------------------------- */ ComputeSNADAtom::~ComputeSNADAtom() { memory->destroy(snad); memory->destroy(radelem); memory->destroy(wjelem); memory->destroy(cutsq); delete snaptr; if (chemflag) memory->destroy(map); if (switchinnerflag) { memory->destroy(sinnerelem); memory->destroy(dinnerelem); } } /* ---------------------------------------------------------------------- */ void ComputeSNADAtom::init() { if (force->pair == nullptr) error->all(FLERR,"Compute snad/atom requires a pair style be defined"); if (cutmax > force->pair->cutforce) error->all(FLERR,"Compute snad/atom cutoff is longer than pairwise cutoff"); // need an occasional full neighbor list neighbor->add_request(this, NeighConst::REQ_FULL | NeighConst::REQ_OCCASIONAL); if (modify->get_compute_by_style("snad/atom").size() > 1 && comm->me == 0) error->warning(FLERR,"More than one compute snad/atom"); snaptr->init(); } /* ---------------------------------------------------------------------- */ void ComputeSNADAtom::init_list(int /*id*/, NeighList *ptr) { list = ptr; } /* ---------------------------------------------------------------------- */ void ComputeSNADAtom::compute_peratom() { int ntotal = atom->nlocal + atom->nghost; invoked_peratom = update->ntimestep; // grow snad array if necessary if (atom->nmax > nmax) { memory->destroy(snad); nmax = atom->nmax; memory->create(snad,nmax,size_peratom_cols, "snad/atom:snad"); array_atom = snad; } // clear local array for (int i = 0; i < ntotal; i++) for (int icoeff = 0; icoeff < size_peratom_cols; icoeff++) { snad[i][icoeff] = 0.0; } // invoke full neighbor list (will copy or build if necessary) neighbor->build_one(list); const int inum = list->inum; const int* const ilist = list->ilist; const int* const numneigh = list->numneigh; int** const firstneigh = list->firstneigh; int * const type = atom->type; // compute sna derivatives for each atom in group // use full neighbor list to count atoms less than cutoff double** const x = atom->x; const int* const mask = atom->mask; for (int ii = 0; ii < inum; ii++) { const int i = ilist[ii]; if (mask[i] & groupbit) { const double xtmp = x[i][0]; const double ytmp = x[i][1]; const double ztmp = x[i][2]; const int itype = type[i]; int ielem = 0; if (chemflag) ielem = map[itype]; const double radi = radelem[itype]; const int* const jlist = firstneigh[i]; const int jnum = numneigh[i]; // const int typeoffset = threencoeff*(atom->type[i]-1); // const int quadraticoffset = threencoeff*atom->ntypes + // threencoeffq*(atom->type[i]-1); const int typeoffset = 3*nvalues*(atom->type[i]-1); // ensure rij, inside, and typej are of size jnum snaptr->grow_rij(jnum); // rij[][3] = displacements between atom I and those neighbors // inside = indices of neighbors of I within cutoff // typej = types of neighbors of I within cutoff // note Rij sign convention => dU/dRij = dU/dRj = -dU/dRi int ninside = 0; for (int jj = 0; jj < jnum; jj++) { int j = jlist[jj]; j &= NEIGHMASK; const double delx = x[j][0] - xtmp; const double dely = x[j][1] - ytmp; const double delz = x[j][2] - ztmp; const double rsq = delx*delx + dely*dely + delz*delz; int jtype = type[j]; int jelem = 0; if (chemflag) jelem = map[jtype]; if (rsq < cutsq[itype][jtype]&&rsq>1e-20) { snaptr->rij[ninside][0] = delx; snaptr->rij[ninside][1] = dely; snaptr->rij[ninside][2] = delz; snaptr->inside[ninside] = j; snaptr->wj[ninside] = wjelem[jtype]; snaptr->rcutij[ninside] = (radi+radelem[jtype])*rcutfac; if (switchinnerflag) { snaptr->sinnerij[ninside] = 0.5*(sinnerelem[itype]+sinnerelem[jtype]); snaptr->dinnerij[ninside] = 0.5*(dinnerelem[itype]+dinnerelem[jtype]); } if (chemflag) snaptr->element[ninside] = jelem; ninside++; } } snaptr->compute_ui(ninside, ielem); snaptr->compute_zi(); if (quadraticflag) { snaptr->compute_bi(ielem); } for (int jj = 0; jj < ninside; jj++) { const int j = snaptr->inside[jj]; snaptr->compute_duidrj(jj); snaptr->compute_dbidrj(); // Accumulate -dBi/dRi, -dBi/dRj double *snadi = snad[i]+typeoffset; double *snadj = snad[j]+typeoffset; for (int icoeff = 0; icoeff < ncoeff; icoeff++) { snadi[icoeff] += snaptr->dblist[icoeff][0]; snadi[icoeff+yoffset] += snaptr->dblist[icoeff][1]; snadi[icoeff+zoffset] += snaptr->dblist[icoeff][2]; snadj[icoeff] -= snaptr->dblist[icoeff][0]; snadj[icoeff+yoffset] -= snaptr->dblist[icoeff][1]; snadj[icoeff+zoffset] -= snaptr->dblist[icoeff][2]; } if (quadraticflag) { const int quadraticoffset = ncoeff; snadi += quadraticoffset; snadj += quadraticoffset; int ncount = 0; for (int icoeff = 0; icoeff < ncoeff; icoeff++) { double bi = snaptr->blist[icoeff]; double bix = snaptr->dblist[icoeff][0]; double biy = snaptr->dblist[icoeff][1]; double biz = snaptr->dblist[icoeff][2]; // diagonal elements of quadratic matrix double dbxtmp = bi*bix; double dbytmp = bi*biy; double dbztmp = bi*biz; snadi[ncount] += dbxtmp; snadi[ncount+yoffset] += dbytmp; snadi[ncount+zoffset] += dbztmp; snadj[ncount] -= dbxtmp; snadj[ncount+yoffset] -= dbytmp; snadj[ncount+zoffset] -= dbztmp; ncount++; // upper-triangular elements of quadratic matrix for (int jcoeff = icoeff+1; jcoeff < ncoeff; jcoeff++) { double dbxtmp = bi*snaptr->dblist[jcoeff][0] + bix*snaptr->blist[jcoeff]; double dbytmp = bi*snaptr->dblist[jcoeff][1] + biy*snaptr->blist[jcoeff]; double dbztmp = bi*snaptr->dblist[jcoeff][2] + biz*snaptr->blist[jcoeff]; snadi[ncount] += dbxtmp; snadi[ncount+yoffset] += dbytmp; snadi[ncount+zoffset] += dbztmp; snadj[ncount] -= dbxtmp; snadj[ncount+yoffset] -= dbytmp; snadj[ncount+zoffset] -= dbztmp; ncount++; } } } } } } // communicate snad contributions between neighbor procs comm->reverse_comm(this); } /* ---------------------------------------------------------------------- */ int ComputeSNADAtom::pack_reverse_comm(int n, int first, double *buf) { int i,m,last,icoeff; m = 0; last = first + n; for (i = first; i < last; i++) for (icoeff = 0; icoeff < size_peratom_cols; icoeff++) buf[m++] = snad[i][icoeff]; return m; } /* ---------------------------------------------------------------------- */ void ComputeSNADAtom::unpack_reverse_comm(int n, int *list, double *buf) { int i,j,m,icoeff; m = 0; for (i = 0; i < n; i++) { j = list[i]; for (icoeff = 0; icoeff < size_peratom_cols; icoeff++) snad[j][icoeff] += buf[m++]; } } /* ---------------------------------------------------------------------- memory usage ------------------------------------------------------------------------- */ double ComputeSNADAtom::memory_usage() { double bytes = (double)nmax*size_peratom_cols * sizeof(double); // snad bytes += snaptr->memory_usage(); // SNA object return bytes; }