/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Chuanfu Luo (luochuanfu@gmail.com) ------------------------------------------------------------------------- */ #include #include #include #include "angle_table.h" #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace MathConst; enum{LINEAR,SPLINE}; #define MAXLINE 1024 #define SMALL 0.001 #define TINY 1.E-10 /* ---------------------------------------------------------------------- */ AngleTable::AngleTable(LAMMPS *lmp) : Angle(lmp) { writedata = 0; ntables = 0; tables = NULL; } /* ---------------------------------------------------------------------- */ AngleTable::~AngleTable() { for (int m = 0; m < ntables; m++) free_table(&tables[m]); memory->sfree(tables); if (allocated) { memory->destroy(setflag); memory->destroy(theta0); memory->destroy(tabindex); } } /* ---------------------------------------------------------------------- */ void AngleTable::compute(int eflag, int vflag) { int i1,i2,i3,n,type; double eangle,f1[3],f3[3]; double delx1,dely1,delz1,delx2,dely2,delz2; double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22; double theta,u,mdu; //mdu: minus du, -du/dx=f eangle = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = 0; double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; // tabulated force & energy theta = acos(c); uf_lookup(type,theta,u,mdu); if (eflag) eangle = u; a = mdu * s; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; // apply force to each of 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); } } /* ---------------------------------------------------------------------- */ void AngleTable::allocate() { allocated = 1; int n = atom->nangletypes; memory->create(theta0,n+1,"angle:theta0"); memory->create(tabindex,n+1,"angle:tabindex"); memory->create(setflag,n+1,"angle:setflag"); for (int i = 1; i <= n; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void AngleTable::settings(int narg, char **arg) { if (narg != 2) error->all(FLERR,"Illegal angle_style command"); if (strcmp(arg[0],"linear") == 0) tabstyle = LINEAR; else if (strcmp(arg[0],"spline") == 0) tabstyle = SPLINE; else error->all(FLERR,"Unknown table style in angle style table"); tablength = force->inumeric(FLERR,arg[1]); if (tablength < 2) error->all(FLERR,"Illegal number of angle table entries"); // delete old tables, since cannot just change settings for (int m = 0; m < ntables; m++) free_table(&tables[m]); memory->sfree(tables); if (allocated) { memory->destroy(setflag); memory->destroy(tabindex); } allocated = 0; ntables = 0; tables = NULL; } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void AngleTable::coeff(int narg, char **arg) { if (narg != 3) error->all(FLERR,"Illegal angle_coeff command"); if (!allocated) allocate(); int ilo,ihi; force->bounds(FLERR,arg[0],atom->nangletypes,ilo,ihi); int me; MPI_Comm_rank(world,&me); tables = (Table *) memory->srealloc(tables,(ntables+1)*sizeof(Table),"angle:tables"); Table *tb = &tables[ntables]; null_table(tb); if (me == 0) read_table(tb,arg[1],arg[2]); bcast_table(tb); // error check on table parameters if (tb->ninput <= 1) error->one(FLERR,"Invalid angle table length"); double alo,ahi; alo = tb->afile[0]; ahi = tb->afile[tb->ninput-1]; if (fabs(alo-0.0) > TINY || fabs(ahi-180.0) > TINY) error->all(FLERR,"Angle table must range from 0 to 180 degrees"); // convert theta from degrees to radians for (int i = 0; i < tb->ninput; i++){ tb->afile[i] *= MY_PI/180.0; tb->ffile[i] *= 180.0/MY_PI; } // spline read-in and compute a,e,f vectors within table spline_table(tb); compute_table(tb); // store ptr to table in tabindex int count = 0; for (int i = ilo; i <= ihi; i++) { tabindex[i] = ntables; setflag[i] = 1; theta0[i] = tb->theta0; count++; } ntables++; if (count == 0) error->all(FLERR,"Illegal angle_coeff command"); } /* ---------------------------------------------------------------------- return an equilbrium angle length should not be used, since don't know minimum of tabulated function ------------------------------------------------------------------------- */ double AngleTable::equilibrium_angle(int i) { return theta0[i]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void AngleTable::write_restart(FILE *fp) { fwrite(&tabstyle,sizeof(int),1,fp); fwrite(&tablength,sizeof(int),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void AngleTable::read_restart(FILE *fp) { if (comm->me == 0) { fread(&tabstyle,sizeof(int),1,fp); fread(&tablength,sizeof(int),1,fp); } MPI_Bcast(&tabstyle,1,MPI_INT,0,world); MPI_Bcast(&tablength,1,MPI_INT,0,world); allocate(); } /* ---------------------------------------------------------------------- */ double AngleTable::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2); double c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; double theta = acos(c); double u=0.0; u_lookup(type,theta,u); return u; } /* ---------------------------------------------------------------------- */ void AngleTable::null_table(Table *tb) { tb->afile = tb->efile = tb->ffile = NULL; tb->e2file = tb->f2file = NULL; tb->ang = tb->e = tb->de = NULL; tb->f = tb->df = tb->e2 = tb->f2 = NULL; } /* ---------------------------------------------------------------------- */ void AngleTable::free_table(Table *tb) { memory->destroy(tb->afile); memory->destroy(tb->efile); memory->destroy(tb->ffile); memory->destroy(tb->e2file); memory->destroy(tb->f2file); memory->destroy(tb->ang); memory->destroy(tb->e); memory->destroy(tb->de); memory->destroy(tb->f); memory->destroy(tb->df); memory->destroy(tb->e2); memory->destroy(tb->f2); } /* ---------------------------------------------------------------------- read table file, only called by proc 0 ------------------------------------------------------------------------- */ void AngleTable::read_table(Table *tb, char *file, char *keyword) { char line[MAXLINE]; // open file FILE *fp = force->open_potential(file); if (fp == NULL) { char str[128]; sprintf(str,"Cannot open file %s",file); error->one(FLERR,str); } // loop until section found with matching keyword while (1) { if (fgets(line,MAXLINE,fp) == NULL) error->one(FLERR,"Did not find keyword in table file"); if (strspn(line," \t\n") == strlen(line)) continue; // blank line if (line[0] == '#') continue; // comment char *word = strtok(line," \t\n\r"); if (strcmp(word,keyword) == 0) break; // matching keyword fgets(line,MAXLINE,fp); // no match, skip section param_extract(tb,line); fgets(line,MAXLINE,fp); for (int i = 0; i < tb->ninput; i++) fgets(line,MAXLINE,fp); } // read args on 2nd line of section // allocate table arrays for file values fgets(line,MAXLINE,fp); param_extract(tb,line); memory->create(tb->afile,tb->ninput,"angle:afile"); memory->create(tb->efile,tb->ninput,"angle:efile"); memory->create(tb->ffile,tb->ninput,"angle:ffile"); // read a,e,f table values from file int itmp; fgets(line,MAXLINE,fp); for (int i = 0; i < tb->ninput; i++) { fgets(line,MAXLINE,fp); sscanf(line,"%d %lg %lg %lg", &itmp,&tb->afile[i],&tb->efile[i],&tb->ffile[i]); } fclose(fp); } /* ---------------------------------------------------------------------- build spline representation of e,f over entire range of read-in table this function sets these values in e2file,f2file ------------------------------------------------------------------------- */ void AngleTable::spline_table(Table *tb) { memory->create(tb->e2file,tb->ninput,"angle:e2file"); memory->create(tb->f2file,tb->ninput,"angle:f2file"); double ep0 = - tb->ffile[0]; double epn = - tb->ffile[tb->ninput-1]; spline(tb->afile,tb->efile,tb->ninput,ep0,epn,tb->e2file); if (tb->fpflag == 0) { tb->fplo = (tb->ffile[1] - tb->ffile[0]) / (tb->afile[1] - tb->afile[0]); tb->fphi = (tb->ffile[tb->ninput-1] - tb->ffile[tb->ninput-2]) / (tb->afile[tb->ninput-1] - tb->afile[tb->ninput-2]); } double fp0 = tb->fplo; double fpn = tb->fphi; spline(tb->afile,tb->ffile,tb->ninput,fp0,fpn,tb->f2file); } /* ---------------------------------------------------------------------- compute a,e,f vectors from splined values ------------------------------------------------------------------------- */ void AngleTable::compute_table(Table *tb) { // delta = table spacing in angle for N-1 bins int tlm1 = tablength-1; tb->delta = MY_PI / tlm1; tb->invdelta = 1.0/tb->delta; tb->deltasq6 = tb->delta*tb->delta / 6.0; // N-1 evenly spaced bins in angle from 0 to PI // ang,e,f = value at lower edge of bin // de,df values = delta values of e,f // ang,e,f are N in length so de,df arrays can compute difference memory->create(tb->ang,tablength,"angle:ang"); memory->create(tb->e,tablength,"angle:e"); memory->create(tb->de,tlm1,"angle:de"); memory->create(tb->f,tablength,"angle:f"); memory->create(tb->df,tlm1,"angle:df"); memory->create(tb->e2,tablength,"angle:e2"); memory->create(tb->f2,tablength,"angle:f2"); double a; for (int i = 0; i < tablength; i++) { a = i*tb->delta; tb->ang[i] = a; tb->e[i] = splint(tb->afile,tb->efile,tb->e2file,tb->ninput,a); tb->f[i] = splint(tb->afile,tb->ffile,tb->f2file,tb->ninput,a); } for (int i = 0; i < tlm1; i++) { tb->de[i] = tb->e[i+1] - tb->e[i]; tb->df[i] = tb->f[i+1] - tb->f[i]; } double ep0 = - tb->f[0]; double epn = - tb->f[tlm1]; spline(tb->ang,tb->e,tablength,ep0,epn,tb->e2); spline(tb->ang,tb->f,tablength,tb->fplo,tb->fphi,tb->f2); } /* ---------------------------------------------------------------------- extract attributes from parameter line in table section format of line: N value FP fplo fphi EQ theta0 N is required, other params are optional ------------------------------------------------------------------------- */ void AngleTable::param_extract(Table *tb, char *line) { tb->ninput = 0; tb->fpflag = 0; tb->theta0 = 180.0; char *word = strtok(line," \t\n\r\f"); while (word) { if (strcmp(word,"N") == 0) { word = strtok(NULL," \t\n\r\f"); tb->ninput = atoi(word); } else if (strcmp(word,"FP") == 0) { tb->fpflag = 1; word = strtok(NULL," \t\n\r\f"); tb->fplo = atof(word); word = strtok(NULL," \t\n\r\f"); tb->fphi = atof(word); tb->fplo *= (180.0/MY_PI)*(180.0/MY_PI); tb->fphi *= (180.0/MY_PI)*(180.0/MY_PI); } else if (strcmp(word,"EQ") == 0) { word = strtok(NULL," \t\n\r\f"); tb->theta0 = atof(word); } else { error->one(FLERR,"Invalid keyword in angle table parameters"); } word = strtok(NULL," \t\n\r\f"); } if (tb->ninput == 0) error->one(FLERR,"Angle table parameters did not set N"); } /* ---------------------------------------------------------------------- broadcast read-in table info from proc 0 to other procs this function communicates these values in Table: ninput,afile,efile,ffile,fpflag,fplo,fphi,theta0 ------------------------------------------------------------------------- */ void AngleTable::bcast_table(Table *tb) { MPI_Bcast(&tb->ninput,1,MPI_INT,0,world); int me; MPI_Comm_rank(world,&me); if (me > 0) { memory->create(tb->afile,tb->ninput,"angle:afile"); memory->create(tb->efile,tb->ninput,"angle:efile"); memory->create(tb->ffile,tb->ninput,"angle:ffile"); } MPI_Bcast(tb->afile,tb->ninput,MPI_DOUBLE,0,world); MPI_Bcast(tb->efile,tb->ninput,MPI_DOUBLE,0,world); MPI_Bcast(tb->ffile,tb->ninput,MPI_DOUBLE,0,world); MPI_Bcast(&tb->fpflag,1,MPI_INT,0,world); if (tb->fpflag) { MPI_Bcast(&tb->fplo,1,MPI_DOUBLE,0,world); MPI_Bcast(&tb->fphi,1,MPI_DOUBLE,0,world); } MPI_Bcast(&tb->theta0,1,MPI_DOUBLE,0,world); } /* ---------------------------------------------------------------------- spline and splint routines modified from Numerical Recipes ------------------------------------------------------------------------- */ void AngleTable::spline(double *x, double *y, int n, double yp1, double ypn, double *y2) { int i,k; double p,qn,sig,un; double *u = new double[n]; if (yp1 > 0.99e30) y2[0] = u[0] = 0.0; else { y2[0] = -0.5; u[0] = (3.0/(x[1]-x[0])) * ((y[1]-y[0]) / (x[1]-x[0]) - yp1); } for (i = 1; i < n-1; i++) { sig = (x[i]-x[i-1]) / (x[i+1]-x[i-1]); p = sig*y2[i-1] + 2.0; y2[i] = (sig-1.0) / p; u[i] = (y[i+1]-y[i]) / (x[i+1]-x[i]) - (y[i]-y[i-1]) / (x[i]-x[i-1]); u[i] = (6.0*u[i] / (x[i+1]-x[i-1]) - sig*u[i-1]) / p; } if (ypn > 0.99e30) qn = un = 0.0; else { qn = 0.5; un = (3.0/(x[n-1]-x[n-2])) * (ypn - (y[n-1]-y[n-2]) / (x[n-1]-x[n-2])); } y2[n-1] = (un-qn*u[n-2]) / (qn*y2[n-2] + 1.0); for (k = n-2; k >= 0; k--) y2[k] = y2[k]*y2[k+1] + u[k]; delete [] u; } /* ---------------------------------------------------------------------- */ double AngleTable::splint(double *xa, double *ya, double *y2a, int n, double x) { int klo,khi,k; double h,b,a,y; klo = 0; khi = n-1; while (khi-klo > 1) { k = (khi+klo) >> 1; if (xa[k] > x) khi = k; else klo = k; } h = xa[khi]-xa[klo]; a = (xa[khi]-x) / h; b = (x-xa[klo]) / h; y = a*ya[klo] + b*ya[khi] + ((a*a*a-a)*y2a[klo] + (b*b*b-b)*y2a[khi]) * (h*h)/6.0; return y; } /* ---------------------------------------------------------------------- calculate potential u and force f at angle x ------------------------------------------------------------------------- */ void AngleTable::uf_lookup(int type, double x, double &u, double &f) { int itable; double fraction,a,b; Table *tb = &tables[tabindex[type]]; if (tabstyle == LINEAR) { itable = static_cast ( x * tb->invdelta); fraction = (x - tb->ang[itable]) * tb->invdelta; u = tb->e[itable] + fraction*tb->de[itable]; f = tb->f[itable] + fraction*tb->df[itable]; } else if (tabstyle == SPLINE) { itable = static_cast ( x * tb->invdelta); fraction = (x - tb->ang[itable]) * tb->invdelta; b = (x - tb->ang[itable]) * tb->invdelta; a = 1.0 - b; u = a * tb->e[itable] + b * tb->e[itable+1] + ((a*a*a-a)*tb->e2[itable] + (b*b*b-b)*tb->e2[itable+1]) * tb->deltasq6; f = a * tb->f[itable] + b * tb->f[itable+1] + ((a*a*a-a)*tb->f2[itable] + (b*b*b-b)*tb->f2[itable+1]) * tb->deltasq6; } } /* ---------------------------------------------------------------------- calculate potential u at angle x ------------------------------------------------------------------------- */ void AngleTable::u_lookup(int type, double x, double &u) { int itable; double fraction,a,b; Table *tb = &tables[tabindex[type]]; if (tabstyle == LINEAR) { itable = static_cast ( x * tb->invdelta); fraction = (x - tb->ang[itable]) * tb->invdelta; u = tb->e[itable] + fraction*tb->de[itable]; } else if (tabstyle == SPLINE) { itable = static_cast ( x * tb->invdelta); fraction = (x - tb->ang[itable]) * tb->invdelta; b = (x - tb->ang[itable]) * tb->invdelta; a = 1.0 - b; u = a * tb->e[itable] + b * tb->e[itable+1] + ((a*a*a-a)*tb->e2[itable] + (b*b*b-b)*tb->e2[itable+1]) * tb->deltasq6; } }