// -*- c++ -*- // This file is part of the Collective Variables module (Colvars). // The original version of Colvars and its updates are located at: // https://github.com/Colvars/colvars // Please update all Colvars source files before making any changes. // If you wish to distribute your changes, please submit them to the // Colvars repository at GitHub. #include "colvarmodule.h" #include "colvarvalue.h" #include "colvar.h" #include "colvarcomp.h" #include "colvar_rotation_derivative.h" struct colvar::orientation::rotation_derivative_impl_: public rotation_derivative { public: rotation_derivative_impl_(colvar::orientation* orientation_cvc): rotation_derivative( orientation_cvc->rot, orientation_cvc->ref_pos, orientation_cvc->shifted_pos) {} }; colvar::orientation::orientation() { set_function_type("orientation"); rot_deriv_impl = std::unique_ptr(new rotation_derivative_impl_(this)); disable(f_cvc_explicit_gradient); x.type(colvarvalue::type_quaternion); } colvar::orientation::~orientation() {} int colvar::orientation::init(std::string const &conf) { int error_code = cvc::init(conf); atoms = parse_group(conf, "atoms"); if (!atoms || atoms->size() == 0) { return error_code | COLVARS_INPUT_ERROR; } ref_pos.reserve(atoms->size()); if (get_keyval(conf, "refPositions", ref_pos, ref_pos)) { cvm::log("Using reference positions from input file.\n"); if (ref_pos.size() != atoms->size()) { return cvm::error("Error: reference positions do not " "match the number of requested atoms.\n", COLVARS_INPUT_ERROR); } } { std::string file_name; if (get_keyval(conf, "refPositionsFile", file_name)) { std::string file_col; double file_col_value=0.0; if (get_keyval(conf, "refPositionsCol", file_col, std::string(""))) { // use PDB flags if column is provided bool found = get_keyval(conf, "refPositionsColValue", file_col_value, 0.0); if (found && file_col_value==0.0) { return cvm::error("Error: refPositionsColValue, " "if provided, must be non-zero.\n", COLVARS_INPUT_ERROR); } } ref_pos.resize(atoms->size()); error_code |= cvm::load_coords(file_name.c_str(), &ref_pos, atoms, file_col, file_col_value); } } if (error_code != COLVARS_OK) return error_code; if (!ref_pos.size()) { return cvm::error("Error: must define a set of " "reference coordinates.\n", COLVARS_INPUT_ERROR); } cvm::rvector ref_cog(0.0, 0.0, 0.0); size_t i; for (i = 0; i < ref_pos.size(); i++) { ref_cog += ref_pos[i]; } ref_cog /= cvm::real(ref_pos.size()); cvm::log("Centering the reference coordinates on the origin by subtracting " "the center of geometry at "+ cvm::to_str(-1.0 * ref_cog)+"; it is " "assumed that each atom is the closest " "periodic image to the center of geometry.\n"); for (i = 0; i < ref_pos.size(); i++) { ref_pos[i] -= ref_cog; } get_keyval(conf, "closestToQuaternion", ref_quat, cvm::quaternion(1.0, 0.0, 0.0, 0.0)); // If the debug gradients feature is active, debug the rotation gradients // (note that this won't be active for the orientation CVC itself, because // colvardeps prevents the flag's activation) rot.b_debug_gradients = is_enabled(f_cvc_debug_gradient); return error_code; } void colvar::orientation::calc_value() { atoms_cog = atoms->center_of_geometry(); shifted_pos = atoms->positions_shifted(-1.0 * atoms_cog); rot.calc_optimal_rotation(ref_pos, shifted_pos); if ((rot.q).inner(ref_quat) >= 0.0) { x.quaternion_value = rot.q; } else { x.quaternion_value = -1.0 * rot.q; } } void colvar::orientation::calc_gradients() { // gradients have already been calculated and stored within the // member object "rot"; we're not using the "grad" member of each // atom object, because it only can represent the gradient of a // scalar colvar } void colvar::orientation::apply_force(colvarvalue const &force) { cvm::quaternion const &FQ = force.quaternion_value; if (!atoms->noforce) { rot_deriv_impl->prepare_derivative(rotation_derivative_dldq::use_dq); cvm::vector1d dq0_2; for (size_t ia = 0; ia < atoms->size(); ia++) { rot_deriv_impl->calc_derivative_wrt_group2(ia, nullptr, &dq0_2); for (size_t i = 0; i < 4; i++) { (*atoms)[ia].apply_force(FQ[i] * dq0_2[i]); } } } } cvm::real colvar::orientation::dist2(colvarvalue const &x1, colvarvalue const &x2) const { return x1.quaternion_value.dist2(x2); } colvarvalue colvar::orientation::dist2_lgrad(colvarvalue const &x1, colvarvalue const &x2) const { return x1.quaternion_value.dist2_grad(x2); } colvarvalue colvar::orientation::dist2_rgrad(colvarvalue const &x1, colvarvalue const &x2) const { return x2.quaternion_value.dist2_grad(x1); } void colvar::orientation::wrap(colvarvalue & /* x_unwrapped */) const {} colvar::orientation_angle::orientation_angle() { set_function_type("orientationAngle"); init_as_angle(); enable(f_cvc_explicit_gradient); } void colvar::orientation_angle::calc_value() { atoms_cog = atoms->center_of_geometry(); shifted_pos = atoms->positions_shifted(-1.0 * atoms_cog); rot.calc_optimal_rotation(ref_pos, shifted_pos); if ((rot.q).q0 >= 0.0) { x.real_value = (180.0/PI) * 2.0 * cvm::acos((rot.q).q0); } else { x.real_value = (180.0/PI) * 2.0 * cvm::acos(-1.0 * (rot.q).q0); } } void colvar::orientation_angle::calc_gradients() { cvm::real const dxdq0 = ( ((rot.q).q0 * (rot.q).q0 < 1.0) ? ((180.0 / PI) * (-2.0) / cvm::sqrt(1.0 - ((rot.q).q0 * (rot.q).q0))) : 0.0 ); rot_deriv_impl->prepare_derivative(rotation_derivative_dldq::use_dq); cvm::vector1d dq0_2; for (size_t ia = 0; ia < atoms->size(); ia++) { rot_deriv_impl->calc_derivative_wrt_group2(ia, nullptr, &dq0_2); (*atoms)[ia].grad = (dxdq0 * dq0_2[0]); } } void colvar::orientation_angle::apply_force(colvarvalue const &force) { cvc::apply_force(force); } cvm::real colvar::orientation_angle::dist2(colvarvalue const &x1, colvarvalue const &x2) const { return cvc::dist2(x1, x2); } colvarvalue colvar::orientation_angle::dist2_lgrad(colvarvalue const &x1, colvarvalue const &x2) const { return cvc::dist2_lgrad(x1, x2); } colvarvalue colvar::orientation_angle::dist2_rgrad(colvarvalue const &x1, colvarvalue const &x2) const { return cvc::dist2_rgrad(x1, x2); } void colvar::orientation_angle::wrap(colvarvalue & /* x_unwrapped */) const {} colvar::orientation_proj::orientation_proj() { set_function_type("orientationProj"); enable(f_cvc_explicit_gradient); x.type(colvarvalue::type_scalar); init_scalar_boundaries(0.0, 1.0); } void colvar::orientation_proj::calc_value() { atoms_cog = atoms->center_of_geometry(); shifted_pos = atoms->positions_shifted(-1.0 * atoms_cog); rot.calc_optimal_rotation(ref_pos, shifted_pos); x.real_value = 2.0 * (rot.q).q0 * (rot.q).q0 - 1.0; } void colvar::orientation_proj::calc_gradients() { cvm::real const dxdq0 = 2.0 * 2.0 * (rot.q).q0; rot_deriv_impl->prepare_derivative(rotation_derivative_dldq::use_dq); cvm::vector1d dq0_2; for (size_t ia = 0; ia < atoms->size(); ia++) { rot_deriv_impl->calc_derivative_wrt_group2(ia, nullptr, &dq0_2); (*atoms)[ia].grad = (dxdq0 * dq0_2[0]); } } colvar::tilt::tilt() { set_function_type("tilt"); x.type(colvarvalue::type_scalar); enable(f_cvc_explicit_gradient); init_scalar_boundaries(-1.0, 1.0); } int colvar::tilt::init(std::string const &conf) { int error_code = orientation_proj::init(conf); get_keyval(conf, "axis", axis, cvm::rvector(0.0, 0.0, 1.0)); if (axis.norm2() != 1.0) { axis /= axis.norm(); cvm::log("Normalizing rotation axis to "+cvm::to_str(axis)+".\n"); } return error_code; } void colvar::tilt::calc_value() { atoms_cog = atoms->center_of_geometry(); shifted_pos = atoms->positions_shifted(-1.0 * atoms_cog); rot.calc_optimal_rotation(ref_pos, shifted_pos); x.real_value = rot.cos_theta(axis); } void colvar::tilt::calc_gradients() { cvm::quaternion const dxdq = rot.dcos_theta_dq(axis); rot_deriv_impl->prepare_derivative(rotation_derivative_dldq::use_dq); cvm::vector1d dq0_2; for (size_t ia = 0; ia < atoms->size(); ia++) { (*atoms)[ia].grad = cvm::rvector(0.0, 0.0, 0.0); rot_deriv_impl->calc_derivative_wrt_group2(ia, nullptr, &dq0_2); for (size_t iq = 0; iq < 4; iq++) { (*atoms)[ia].grad += (dxdq[iq] * dq0_2[iq]); } } } colvar::spin_angle::spin_angle() { set_function_type("spinAngle"); init_as_periodic_angle(); enable(f_cvc_explicit_gradient); } void colvar::spin_angle::calc_value() { atoms_cog = atoms->center_of_geometry(); shifted_pos = atoms->positions_shifted(-1.0 * atoms_cog); rot.calc_optimal_rotation(ref_pos, shifted_pos); x.real_value = rot.spin_angle(axis); wrap(x); } void colvar::spin_angle::calc_gradients() { cvm::quaternion const dxdq = rot.dspin_angle_dq(axis); rot_deriv_impl->prepare_derivative(rotation_derivative_dldq::use_dq); cvm::vector1d dq0_2; for (size_t ia = 0; ia < atoms->size(); ia++) { (*atoms)[ia].grad = cvm::rvector(0.0, 0.0, 0.0); rot_deriv_impl->calc_derivative_wrt_group2(ia, nullptr, &dq0_2); for (size_t iq = 0; iq < 4; iq++) { (*atoms)[ia].grad += (dxdq[iq] * dq0_2[iq]); } } } colvar::euler_phi::euler_phi() { set_function_type("eulerPhi"); init_as_periodic_angle(); enable(f_cvc_explicit_gradient); } void colvar::euler_phi::calc_value() { atoms_cog = atoms->center_of_geometry(); shifted_pos = atoms->positions_shifted(-1.0 * atoms_cog); rot.calc_optimal_rotation(ref_pos, shifted_pos); const cvm::real& q0 = rot.q.q0; const cvm::real& q1 = rot.q.q1; const cvm::real& q2 = rot.q.q2; const cvm::real& q3 = rot.q.q3; const cvm::real tmp_y = 2 * (q0 * q1 + q2 * q3); const cvm::real tmp_x = 1 - 2 * (q1 * q1 + q2 * q2); x.real_value = cvm::atan2(tmp_y, tmp_x) * (180.0/PI); } void colvar::euler_phi::calc_gradients() { const cvm::real& q0 = rot.q.q0; const cvm::real& q1 = rot.q.q1; const cvm::real& q2 = rot.q.q2; const cvm::real& q3 = rot.q.q3; const cvm::real denominator = (2 * q0 * q1 + 2 * q2 * q3) * (2 * q0 * q1 + 2 * q2 * q3) + (-2 * q1 * q1 - 2 * q2 * q2 + 1) * (-2 * q1 * q1 - 2 * q2 * q2 + 1); const cvm::real dxdq0 = (180.0/PI) * 2 * q1 * (-2 * q1 * q1 - 2 * q2 * q2 + 1) / denominator; const cvm::real dxdq1 = (180.0/PI) * (2 * q0 * (-2 * q1 * q1 - 2 * q2 * q2 + 1) - 4 * q1 * (-2 * q0 * q1 - 2 * q2 * q3)) / denominator; const cvm::real dxdq2 = (180.0/PI) * (-4 * q2 * (-2 * q0 * q1 - 2 * q2 * q3) + 2 * q3 * (-2 * q1 * q1 - 2 * q2 * q2 + 1)) / denominator; const cvm::real dxdq3 = (180.0/PI) * 2 * q2 * (-2 * q1 * q1 - 2 * q2 * q2 + 1) / denominator; rot_deriv_impl->prepare_derivative(rotation_derivative_dldq::use_dq); cvm::vector1d dq0_2; for (size_t ia = 0; ia < atoms->size(); ia++) { rot_deriv_impl->calc_derivative_wrt_group2(ia, nullptr, &dq0_2); (*atoms)[ia].grad = (dxdq0 * dq0_2[0]) + (dxdq1 * dq0_2[1]) + (dxdq2 * dq0_2[2]) + (dxdq3 * dq0_2[3]); } } colvar::euler_psi::euler_psi() { set_function_type("eulerPsi"); init_as_periodic_angle(); enable(f_cvc_explicit_gradient); } void colvar::euler_psi::calc_value() { atoms_cog = atoms->center_of_geometry(); shifted_pos = atoms->positions_shifted(-1.0 * atoms_cog); rot.calc_optimal_rotation(ref_pos, shifted_pos); const cvm::real& q0 = rot.q.q0; const cvm::real& q1 = rot.q.q1; const cvm::real& q2 = rot.q.q2; const cvm::real& q3 = rot.q.q3; const cvm::real tmp_y = 2 * (q0 * q3 + q1 * q2); const cvm::real tmp_x = 1 - 2 * (q2 * q2 + q3 * q3); x.real_value = cvm::atan2(tmp_y, tmp_x) * (180.0/PI); } void colvar::euler_psi::calc_gradients() { const cvm::real& q0 = rot.q.q0; const cvm::real& q1 = rot.q.q1; const cvm::real& q2 = rot.q.q2; const cvm::real& q3 = rot.q.q3; const cvm::real denominator = (2 * q0 * q3 + 2 * q1 * q2) * (2 * q0 * q3 + 2 * q1 * q2) + (-2 * q2 * q2 - 2 * q3 * q3 + 1) * (-2 * q2 * q2 - 2 * q3 * q3 + 1); const cvm::real dxdq0 = (180.0/PI) * 2 * q3 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) / denominator; const cvm::real dxdq1 = (180.0/PI) * 2 * q2 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) / denominator; const cvm::real dxdq2 = (180.0/PI) * (2 * q1 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) - 4 * q2 * (-2 * q0 * q3 - 2 * q1 * q2)) / denominator; const cvm::real dxdq3 = (180.0/PI) * (2 * q0 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) - 4 * q3 * (-2 * q0 * q3 - 2 * q1 * q2)) / denominator; rot_deriv_impl->prepare_derivative(rotation_derivative_dldq::use_dq); cvm::vector1d dq0_2; for (size_t ia = 0; ia < atoms->size(); ia++) { rot_deriv_impl->calc_derivative_wrt_group2(ia, nullptr, &dq0_2); (*atoms)[ia].grad = (dxdq0 * dq0_2[0]) + (dxdq1 * dq0_2[1]) + (dxdq2 * dq0_2[2]) + (dxdq3 * dq0_2[3]); } } colvar::euler_theta::euler_theta() { set_function_type("eulerTheta"); init_as_angle(); enable(f_cvc_explicit_gradient); } void colvar::euler_theta::calc_value() { atoms_cog = atoms->center_of_geometry(); shifted_pos = atoms->positions_shifted(-1.0 * atoms_cog); rot.calc_optimal_rotation(ref_pos, shifted_pos); const cvm::real& q0 = rot.q.q0; const cvm::real& q1 = rot.q.q1; const cvm::real& q2 = rot.q.q2; const cvm::real& q3 = rot.q.q3; x.real_value = cvm::asin(2 * (q0 * q2 - q3 * q1)) * (180.0/PI); } void colvar::euler_theta::calc_gradients() { const cvm::real& q0 = rot.q.q0; const cvm::real& q1 = rot.q.q1; const cvm::real& q2 = rot.q.q2; const cvm::real& q3 = rot.q.q3; const cvm::real denominator = cvm::sqrt(1 - (2 * q0 * q2 - 2 * q1 * q3) * (2 * q0 * q2 - 2 * q1 * q3)); const cvm::real dxdq0 = (180.0/PI) * 2 * q2 / denominator; const cvm::real dxdq1 = (180.0/PI) * -2 * q3 / denominator; const cvm::real dxdq2 = (180.0/PI) * 2 * q0 / denominator; const cvm::real dxdq3 = (180.0/PI) * -2 * q1 / denominator; rot_deriv_impl->prepare_derivative(rotation_derivative_dldq::use_dq); cvm::vector1d dq0_2; for (size_t ia = 0; ia < atoms->size(); ia++) { rot_deriv_impl->calc_derivative_wrt_group2(ia, nullptr, &dq0_2); (*atoms)[ia].grad = (dxdq0 * dq0_2[0]) + (dxdq1 * dq0_2[1]) + (dxdq2 * dq0_2[2]) + (dxdq3 * dq0_2[3]); } }