/* fortran/dlacn2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; /* > \brief \b DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matr ix-vector products. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLACN2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLACN2( N, V, X, ISGN, EST, KASE, ISAVE ) */ /* .. Scalar Arguments .. */ /* INTEGER KASE, N */ /* DOUBLE PRECISION EST */ /* .. */ /* .. Array Arguments .. */ /* INTEGER ISGN( * ), ISAVE( 3 ) */ /* DOUBLE PRECISION V( * ), X( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLACN2 estimates the 1-norm of a square, real matrix A. */ /* > Reverse communication is used for evaluating matrix-vector products. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix. N >= 1. */ /* > \endverbatim */ /* > */ /* > \param[out] V */ /* > \verbatim */ /* > V is DOUBLE PRECISION array, dimension (N) */ /* > On the final return, V = A*W, where EST = norm(V)/norm(W) */ /* > (W is not returned). */ /* > \endverbatim */ /* > */ /* > \param[in,out] X */ /* > \verbatim */ /* > X is DOUBLE PRECISION array, dimension (N) */ /* > On an intermediate return, X should be overwritten by */ /* > A * X, if KASE=1, */ /* > A**T * X, if KASE=2, */ /* > and DLACN2 must be re-called with all the other parameters */ /* > unchanged. */ /* > \endverbatim */ /* > */ /* > \param[out] ISGN */ /* > \verbatim */ /* > ISGN is INTEGER array, dimension (N) */ /* > \endverbatim */ /* > */ /* > \param[in,out] EST */ /* > \verbatim */ /* > EST is DOUBLE PRECISION */ /* > On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be */ /* > unchanged from the previous call to DLACN2. */ /* > On exit, EST is an estimate (a lower bound) for norm(A). */ /* > \endverbatim */ /* > */ /* > \param[in,out] KASE */ /* > \verbatim */ /* > KASE is INTEGER */ /* > On the initial call to DLACN2, KASE should be 0. */ /* > On an intermediate return, KASE will be 1 or 2, indicating */ /* > whether X should be overwritten by A * X or A**T * X. */ /* > On the final return from DLACN2, KASE will again be 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] ISAVE */ /* > \verbatim */ /* > ISAVE is INTEGER array, dimension (3) */ /* > ISAVE is used to save variables between calls to DLACN2 */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleOTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Originally named SONEST, dated March 16, 1988. */ /* > */ /* > This is a thread safe version of DLACON, which uses the array ISAVE */ /* > in place of a SAVE statement, as follows: */ /* > */ /* > DLACON DLACN2 */ /* > JUMP ISAVE(1) */ /* > J ISAVE(2) */ /* > ITER ISAVE(3) */ /* > \endverbatim */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Nick Higham, University of Manchester */ /* > \par References: */ /* ================ */ /* > */ /* > N.J. Higham, "FORTRAN codes for estimating the one-norm of */ /* > a real or complex matrix, with applications to condition estimation", */ /* > ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988. */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlacn2_(integer *n, doublereal *v, doublereal *x, integer *isgn, doublereal *est, integer *kase, integer *isave) { /* System generated locals */ integer i__1; doublereal d__1; /* Builtin functions */ integer i_lmp_dnnt(doublereal *); /* Local variables */ integer i__; doublereal xs, temp; extern doublereal dasum_(integer *, doublereal *, integer *); integer jlast; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); extern integer idamax_(integer *, doublereal *, integer *); doublereal altsgn, estold; /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --isave; --isgn; --x; --v; /* Function Body */ if (*kase == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { x[i__] = 1. / (doublereal) (*n); /* L10: */ } *kase = 1; isave[1] = 1; return 0; } switch (isave[1]) { case 1: goto L20; case 2: goto L40; case 3: goto L70; case 4: goto L110; case 5: goto L140; } /* ................ ENTRY (ISAVE( 1 ) = 1) */ /* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X. */ L20: if (*n == 1) { v[1] = x[1]; *est = abs(v[1]); /* ... QUIT */ goto L150; } *est = dasum_(n, &x[1], &c__1); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (x[i__] >= 0.) { x[i__] = 1.; } else { x[i__] = -1.; } isgn[i__] = i_lmp_dnnt(&x[i__]); /* L30: */ } *kase = 2; isave[1] = 2; return 0; /* ................ ENTRY (ISAVE( 1 ) = 2) */ /* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */ L40: isave[2] = idamax_(n, &x[1], &c__1); isave[3] = 2; /* MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */ L50: i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { x[i__] = 0.; /* L60: */ } x[isave[2]] = 1.; *kase = 1; isave[1] = 3; return 0; /* ................ ENTRY (ISAVE( 1 ) = 3) */ /* X HAS BEEN OVERWRITTEN BY A*X. */ L70: dcopy_(n, &x[1], &c__1, &v[1], &c__1); estold = *est; *est = dasum_(n, &v[1], &c__1); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (x[i__] >= 0.) { xs = 1.; } else { xs = -1.; } if (i_lmp_dnnt(&xs) != isgn[i__]) { goto L90; } /* L80: */ } /* REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED. */ goto L120; L90: /* TEST FOR CYCLING. */ if (*est <= estold) { goto L120; } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (x[i__] >= 0.) { x[i__] = 1.; } else { x[i__] = -1.; } isgn[i__] = i_lmp_dnnt(&x[i__]); /* L100: */ } *kase = 2; isave[1] = 4; return 0; /* ................ ENTRY (ISAVE( 1 ) = 4) */ /* X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */ L110: jlast = isave[2]; isave[2] = idamax_(n, &x[1], &c__1); if (x[jlast] != (d__1 = x[isave[2]], abs(d__1)) && isave[3] < 5) { ++isave[3]; goto L50; } /* ITERATION COMPLETE. FINAL STAGE. */ L120: altsgn = 1.; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { x[i__] = altsgn * ((doublereal) (i__ - 1) / (doublereal) (*n - 1) + 1.); altsgn = -altsgn; /* L130: */ } *kase = 1; isave[1] = 5; return 0; /* ................ ENTRY (ISAVE( 1 ) = 5) */ /* X HAS BEEN OVERWRITTEN BY A*X. */ L140: temp = dasum_(n, &x[1], &c__1) / (doublereal) (*n * 3) * 2.; if (temp > *est) { dcopy_(n, &x[1], &c__1, &v[1], &c__1); *est = temp; } L150: *kase = 0; return 0; /* End of DLACN2 */ } /* dlacn2_ */ #ifdef __cplusplus } #endif