/* fortran/dsterf.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__0 = 0; static integer c__1 = 1; static doublereal c_b33 = 1.; /* > \brief \b DSTERF */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DSTERF + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DSTERF( N, D, E, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION D( * ), E( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DSTERF computes all eigenvalues of a symmetric tridiagonal matrix */ /* > using the Pal-Walker-Kahan variant of the QL or QR algorithm. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension (N) */ /* > On entry, the n diagonal elements of the tridiagonal matrix. */ /* > On exit, if INFO = 0, the eigenvalues in ascending order. */ /* > \endverbatim */ /* > */ /* > \param[in,out] E */ /* > \verbatim */ /* > E is DOUBLE PRECISION array, dimension (N-1) */ /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */ /* > matrix. */ /* > On exit, E has been destroyed. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: the algorithm failed to find all of the eigenvalues in */ /* > a total of 30*N iterations; if INFO = i, then i */ /* > elements of E have not converged to zero. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup auxOTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int dsterf_(integer *n, doublereal *d__, doublereal *e, integer *info) { /* System generated locals */ integer i__1; doublereal d__1, d__2, d__3; /* Builtin functions */ double sqrt(doublereal), d_lmp_sign(doublereal *, doublereal *); /* Local variables */ doublereal c__; integer i__, l, m; doublereal p, r__, s; integer l1; doublereal bb, rt1, rt2, eps, rte; integer lsv; doublereal eps2, oldc; integer lend; doublereal rmax; integer jtot; extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); doublereal gamma, alpha, sigma, anorm; extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *, ftnlen); integer iscale; extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, ftnlen); doublereal oldgam, safmin; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); doublereal safmax; extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *, ftnlen); extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *, integer *, ftnlen); integer lendsv; doublereal ssfmin; integer nmaxit; doublereal ssfmax; /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --e; --d__; /* Function Body */ *info = 0; /* Quick return if possible */ if (*n < 0) { *info = -1; i__1 = -(*info); xerbla_((char *)"DSTERF", &i__1, (ftnlen)6); return 0; } if (*n <= 1) { return 0; } /* Determine the unit roundoff for this environment. */ eps = dlamch_((char *)"E", (ftnlen)1); /* Computing 2nd power */ d__1 = eps; eps2 = d__1 * d__1; safmin = dlamch_((char *)"S", (ftnlen)1); safmax = 1. / safmin; ssfmax = sqrt(safmax) / 3.; ssfmin = sqrt(safmin) / eps2; rmax = dlamch_((char *)"O", (ftnlen)1); /* Compute the eigenvalues of the tridiagonal matrix. */ nmaxit = *n * 30; sigma = 0.; jtot = 0; /* Determine where the matrix splits and choose QL or QR iteration */ /* for each block, according to whether top or bottom diagonal */ /* element is smaller. */ l1 = 1; L10: if (l1 > *n) { goto L170; } if (l1 > 1) { e[l1 - 1] = 0.; } i__1 = *n - 1; for (m = l1; m <= i__1; ++m) { if ((d__3 = e[m], abs(d__3)) <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m + 1], abs(d__2))) * eps) { e[m] = 0.; goto L30; } /* L20: */ } m = *n; L30: l = l1; lsv = l; lend = m; lendsv = lend; l1 = m + 1; if (lend == l) { goto L10; } /* Scale submatrix in rows and columns L to LEND */ i__1 = lend - l + 1; anorm = dlanst_((char *)"M", &i__1, &d__[l], &e[l], (ftnlen)1); iscale = 0; if (anorm == 0.) { goto L10; } if (anorm > ssfmax) { iscale = 1; i__1 = lend - l + 1; dlascl_((char *)"G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, info, (ftnlen)1); i__1 = lend - l; dlascl_((char *)"G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, info, (ftnlen)1); } else if (anorm < ssfmin) { iscale = 2; i__1 = lend - l + 1; dlascl_((char *)"G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, info, (ftnlen)1); i__1 = lend - l; dlascl_((char *)"G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, info, (ftnlen)1); } i__1 = lend - 1; for (i__ = l; i__ <= i__1; ++i__) { /* Computing 2nd power */ d__1 = e[i__]; e[i__] = d__1 * d__1; /* L40: */ } /* Choose between QL and QR iteration */ if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) { lend = lsv; l = lendsv; } if (lend >= l) { /* QL Iteration */ /* Look for small subdiagonal element. */ L50: if (l != lend) { i__1 = lend - 1; for (m = l; m <= i__1; ++m) { if ((d__2 = e[m], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m + 1], abs(d__1))) { goto L70; } /* L60: */ } } m = lend; L70: if (m < lend) { e[m] = 0.; } p = d__[l]; if (m == l) { goto L90; } /* If remaining matrix is 2 by 2, use DLAE2 to compute its */ /* eigenvalues. */ if (m == l + 1) { rte = sqrt(e[l]); dlae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2); d__[l] = rt1; d__[l + 1] = rt2; e[l] = 0.; l += 2; if (l <= lend) { goto L50; } goto L150; } if (jtot == nmaxit) { goto L150; } ++jtot; /* Form shift. */ rte = sqrt(e[l]); sigma = (d__[l + 1] - p) / (rte * 2.); r__ = dlapy2_(&sigma, &c_b33); sigma = p - rte / (sigma + d_lmp_sign(&r__, &sigma)); c__ = 1.; s = 0.; gamma = d__[m] - sigma; p = gamma * gamma; /* Inner loop */ i__1 = l; for (i__ = m - 1; i__ >= i__1; --i__) { bb = e[i__]; r__ = p + bb; if (i__ != m - 1) { e[i__ + 1] = s * r__; } oldc = c__; c__ = p / r__; s = bb / r__; oldgam = gamma; alpha = d__[i__]; gamma = c__ * (alpha - sigma) - s * oldgam; d__[i__ + 1] = oldgam + (alpha - gamma); if (c__ != 0.) { p = gamma * gamma / c__; } else { p = oldc * bb; } /* L80: */ } e[l] = s * p; d__[l] = sigma + gamma; goto L50; /* Eigenvalue found. */ L90: d__[l] = p; ++l; if (l <= lend) { goto L50; } goto L150; } else { /* QR Iteration */ /* Look for small superdiagonal element. */ L100: i__1 = lend + 1; for (m = l; m >= i__1; --m) { if ((d__2 = e[m - 1], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m - 1], abs(d__1))) { goto L120; } /* L110: */ } m = lend; L120: if (m > lend) { e[m - 1] = 0.; } p = d__[l]; if (m == l) { goto L140; } /* If remaining matrix is 2 by 2, use DLAE2 to compute its */ /* eigenvalues. */ if (m == l - 1) { rte = sqrt(e[l - 1]); dlae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2); d__[l] = rt1; d__[l - 1] = rt2; e[l - 1] = 0.; l += -2; if (l >= lend) { goto L100; } goto L150; } if (jtot == nmaxit) { goto L150; } ++jtot; /* Form shift. */ rte = sqrt(e[l - 1]); sigma = (d__[l - 1] - p) / (rte * 2.); r__ = dlapy2_(&sigma, &c_b33); sigma = p - rte / (sigma + d_lmp_sign(&r__, &sigma)); c__ = 1.; s = 0.; gamma = d__[m] - sigma; p = gamma * gamma; /* Inner loop */ i__1 = l - 1; for (i__ = m; i__ <= i__1; ++i__) { bb = e[i__]; r__ = p + bb; if (i__ != m) { e[i__ - 1] = s * r__; } oldc = c__; c__ = p / r__; s = bb / r__; oldgam = gamma; alpha = d__[i__ + 1]; gamma = c__ * (alpha - sigma) - s * oldgam; d__[i__] = oldgam + (alpha - gamma); if (c__ != 0.) { p = gamma * gamma / c__; } else { p = oldc * bb; } /* L130: */ } e[l - 1] = s * p; d__[l] = sigma + gamma; goto L100; /* Eigenvalue found. */ L140: d__[l] = p; --l; if (l >= lend) { goto L100; } goto L150; } /* Undo scaling if necessary */ L150: if (iscale == 1) { i__1 = lendsv - lsv + 1; dlascl_((char *)"G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], n, info, (ftnlen)1); } if (iscale == 2) { i__1 = lendsv - lsv + 1; dlascl_((char *)"G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], n, info, (ftnlen)1); } /* Check for no convergence to an eigenvalue after a total */ /* of N*MAXIT iterations. */ if (jtot < nmaxit) { goto L10; } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { if (e[i__] != 0.) { ++(*info); } /* L160: */ } goto L180; /* Sort eigenvalues in increasing order. */ L170: dlasrt_((char *)"I", n, &d__[1], info, (ftnlen)1); L180: return 0; /* End of DSTERF */ } /* dsterf_ */ #ifdef __cplusplus } #endif