/* fortran/zgemm.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b ZGEMM */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) */ /* .. Scalar Arguments .. */ /* COMPLEX*16 ALPHA,BETA */ /* INTEGER K,LDA,LDB,LDC,M,N */ /* CHARACTER TRANSA,TRANSB */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZGEMM performs one of the matrix-matrix operations */ /* > */ /* > C := alpha*op( A )*op( B ) + beta*C, */ /* > */ /* > where op( X ) is one of */ /* > */ /* > op( X ) = X or op( X ) = X**T or op( X ) = X**H, */ /* > */ /* > alpha and beta are scalars, and A, B and C are matrices, with op( A ) */ /* > an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] TRANSA */ /* > \verbatim */ /* > TRANSA is CHARACTER*1 */ /* > On entry, TRANSA specifies the form of op( A ) to be used in */ /* > the matrix multiplication as follows: */ /* > */ /* > TRANSA = 'N' or 'n', op( A ) = A. */ /* > */ /* > TRANSA = 'T' or 't', op( A ) = A**T. */ /* > */ /* > TRANSA = 'C' or 'c', op( A ) = A**H. */ /* > \endverbatim */ /* > */ /* > \param[in] TRANSB */ /* > \verbatim */ /* > TRANSB is CHARACTER*1 */ /* > On entry, TRANSB specifies the form of op( B ) to be used in */ /* > the matrix multiplication as follows: */ /* > */ /* > TRANSB = 'N' or 'n', op( B ) = B. */ /* > */ /* > TRANSB = 'T' or 't', op( B ) = B**T. */ /* > */ /* > TRANSB = 'C' or 'c', op( B ) = B**H. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > On entry, M specifies the number of rows of the matrix */ /* > op( A ) and of the matrix C. M must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the number of columns of the matrix */ /* > op( B ) and the number of columns of the matrix C. N must be */ /* > at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > On entry, K specifies the number of columns of the matrix */ /* > op( A ) and the number of rows of the matrix op( B ). K must */ /* > be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is COMPLEX*16 */ /* > On entry, ALPHA specifies the scalar alpha. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is */ /* > k when TRANSA = 'N' or 'n', and is m otherwise. */ /* > Before entry with TRANSA = 'N' or 'n', the leading m by k */ /* > part of the array A must contain the matrix A, otherwise */ /* > the leading k by m part of the array A must contain the */ /* > matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > On entry, LDA specifies the first dimension of A as declared */ /* > in the calling (sub) program. When TRANSA = 'N' or 'n' then */ /* > LDA must be at least max( 1, m ), otherwise LDA must be at */ /* > least max( 1, k ). */ /* > \endverbatim */ /* > */ /* > \param[in] B */ /* > \verbatim */ /* > B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is */ /* > n when TRANSB = 'N' or 'n', and is k otherwise. */ /* > Before entry with TRANSB = 'N' or 'n', the leading k by n */ /* > part of the array B must contain the matrix B, otherwise */ /* > the leading n by k part of the array B must contain the */ /* > matrix B. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > On entry, LDB specifies the first dimension of B as declared */ /* > in the calling (sub) program. When TRANSB = 'N' or 'n' then */ /* > LDB must be at least max( 1, k ), otherwise LDB must be at */ /* > least max( 1, n ). */ /* > \endverbatim */ /* > */ /* > \param[in] BETA */ /* > \verbatim */ /* > BETA is COMPLEX*16 */ /* > On entry, BETA specifies the scalar beta. When BETA is */ /* > supplied as zero then C need not be set on input. */ /* > \endverbatim */ /* > */ /* > \param[in,out] C */ /* > \verbatim */ /* > C is COMPLEX*16 array, dimension ( LDC, N ) */ /* > Before entry, the leading m by n part of the array C must */ /* > contain the matrix C, except when beta is zero, in which */ /* > case C need not be set on entry. */ /* > On exit, the array C is overwritten by the m by n matrix */ /* > ( alpha*op( A )*op( B ) + beta*C ). */ /* > \endverbatim */ /* > */ /* > \param[in] LDC */ /* > \verbatim */ /* > LDC is INTEGER */ /* > On entry, LDC specifies the first dimension of C as declared */ /* > in the calling (sub) program. LDC must be at least */ /* > max( 1, m ). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16_blas_level3 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Level 3 Blas routine. */ /* > */ /* > -- Written on 8-February-1989. */ /* > Jack Dongarra, Argonne National Laboratory. */ /* > Iain Duff, AERE Harwell. */ /* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* > Sven Hammarling, Numerical Algorithms Group Ltd. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zgemm_(char *transa, char *transb, integer *m, integer * n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, doublecomplex *beta, doublecomplex * c__, integer *ldc, ftnlen transa_len, ftnlen transb_len) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublecomplex z__1, z__2, z__3, z__4; /* Builtin functions */ void d_lmp_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, l, info; logical nota, notb; doublecomplex temp; logical conja, conjb; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer nrowa, nrowb; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- Reference BLAS level3 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Set NOTA and NOTB as true if A and B respectively are not */ /* conjugated or transposed, set CONJA and CONJB as true if A and */ /* B respectively are to be transposed but not conjugated and set */ /* NROWA and NROWB as the number of rows of A and B respectively. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ nota = lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1); notb = lsame_(transb, (char *)"N", (ftnlen)1, (ftnlen)1); conja = lsame_(transa, (char *)"C", (ftnlen)1, (ftnlen)1); conjb = lsame_(transb, (char *)"C", (ftnlen)1, (ftnlen)1); if (nota) { nrowa = *m; } else { nrowa = *k; } if (notb) { nrowb = *k; } else { nrowb = *n; } /* Test the input parameters. */ info = 0; if (! nota && ! conja && ! lsame_(transa, (char *)"T", (ftnlen)1, (ftnlen)1)) { info = 1; } else if (! notb && ! conjb && ! lsame_(transb, (char *)"T", (ftnlen)1, (ftnlen) 1)) { info = 2; } else if (*m < 0) { info = 3; } else if (*n < 0) { info = 4; } else if (*k < 0) { info = 5; } else if (*lda < max(1,nrowa)) { info = 8; } else if (*ldb < max(1,nrowb)) { info = 10; } else if (*ldc < max(1,*m)) { info = 13; } if (info != 0) { xerbla_((char *)"ZGEMM ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || (alpha->r == 0. && alpha->i == 0. || *k == 0) && (beta->r == 1. && beta->i == 0.)) { return 0; } /* And when alpha.eq.zero. */ if (alpha->r == 0. && alpha->i == 0.) { if (beta->r == 0. && beta->i == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i, z__1.i = beta->r * c__[i__4].i + beta->i * c__[ i__4].r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L30: */ } /* L40: */ } } return 0; } /* Start the operations. */ if (notb) { if (nota) { /* Form C := alpha*A*B + beta*C. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { if (beta->r == 0. && beta->i == 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L50: */ } } else if (beta->r != 1. || beta->i != 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__1.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L60: */ } } i__2 = *k; for (l = 1; l <= i__2; ++l) { i__3 = l + j * b_dim1; z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, z__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3] .r; temp.r = z__1.r, temp.i = z__1.i; i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * c_dim1; i__5 = i__ + j * c_dim1; i__6 = i__ + l * a_dim1; z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, z__2.i = temp.r * a[i__6].i + temp.i * a[i__6] .r; z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i + z__2.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; /* L70: */ } /* L80: */ } /* L90: */ } } else if (conja) { /* Form C := alpha*A**H*B + beta*C. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp.r = 0., temp.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]); i__4 = l + j * b_dim1; z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i, z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4] .r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L100: */ } if (beta->r == 0. && beta->i == 0.) { i__3 = i__ + j * c_dim1; z__1.r = alpha->r * temp.r - alpha->i * temp.i, z__1.i = alpha->r * temp.i + alpha->i * temp.r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = alpha->r * temp.i + alpha->i * temp.r; i__4 = i__ + j * c_dim1; z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__3.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } /* L110: */ } /* L120: */ } } else { /* Form C := alpha*A**T*B + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp.r = 0., temp.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { i__4 = l + i__ * a_dim1; i__5 = l + j * b_dim1; z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5] .i, z__2.i = a[i__4].r * b[i__5].i + a[i__4] .i * b[i__5].r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L130: */ } if (beta->r == 0. && beta->i == 0.) { i__3 = i__ + j * c_dim1; z__1.r = alpha->r * temp.r - alpha->i * temp.i, z__1.i = alpha->r * temp.i + alpha->i * temp.r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = alpha->r * temp.i + alpha->i * temp.r; i__4 = i__ + j * c_dim1; z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__3.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } /* L140: */ } /* L150: */ } } } else if (nota) { if (conjb) { /* Form C := alpha*A*B**H + beta*C. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { if (beta->r == 0. && beta->i == 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L160: */ } } else if (beta->r != 1. || beta->i != 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__1.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L170: */ } } i__2 = *k; for (l = 1; l <= i__2; ++l) { d_lmp_cnjg(&z__2, &b[j + l * b_dim1]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * c_dim1; i__5 = i__ + j * c_dim1; i__6 = i__ + l * a_dim1; z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, z__2.i = temp.r * a[i__6].i + temp.i * a[i__6] .r; z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i + z__2.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; /* L180: */ } /* L190: */ } /* L200: */ } } else { /* Form C := alpha*A*B**T + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { if (beta->r == 0. && beta->i == 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L210: */ } } else if (beta->r != 1. || beta->i != 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__1.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L220: */ } } i__2 = *k; for (l = 1; l <= i__2; ++l) { i__3 = j + l * b_dim1; z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, z__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3] .r; temp.r = z__1.r, temp.i = z__1.i; i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * c_dim1; i__5 = i__ + j * c_dim1; i__6 = i__ + l * a_dim1; z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, z__2.i = temp.r * a[i__6].i + temp.i * a[i__6] .r; z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i + z__2.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; /* L230: */ } /* L240: */ } /* L250: */ } } } else if (conja) { if (conjb) { /* Form C := alpha*A**H*B**H + beta*C. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp.r = 0., temp.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]); d_lmp_cnjg(&z__4, &b[j + l * b_dim1]); z__2.r = z__3.r * z__4.r - z__3.i * z__4.i, z__2.i = z__3.r * z__4.i + z__3.i * z__4.r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L260: */ } if (beta->r == 0. && beta->i == 0.) { i__3 = i__ + j * c_dim1; z__1.r = alpha->r * temp.r - alpha->i * temp.i, z__1.i = alpha->r * temp.i + alpha->i * temp.r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = alpha->r * temp.i + alpha->i * temp.r; i__4 = i__ + j * c_dim1; z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__3.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } /* L270: */ } /* L280: */ } } else { /* Form C := alpha*A**H*B**T + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp.r = 0., temp.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]); i__4 = j + l * b_dim1; z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i, z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4] .r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L290: */ } if (beta->r == 0. && beta->i == 0.) { i__3 = i__ + j * c_dim1; z__1.r = alpha->r * temp.r - alpha->i * temp.i, z__1.i = alpha->r * temp.i + alpha->i * temp.r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = alpha->r * temp.i + alpha->i * temp.r; i__4 = i__ + j * c_dim1; z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__3.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } /* L300: */ } /* L310: */ } } } else { if (conjb) { /* Form C := alpha*A**T*B**H + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp.r = 0., temp.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { i__4 = l + i__ * a_dim1; d_lmp_cnjg(&z__3, &b[j + l * b_dim1]); z__2.r = a[i__4].r * z__3.r - a[i__4].i * z__3.i, z__2.i = a[i__4].r * z__3.i + a[i__4].i * z__3.r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L320: */ } if (beta->r == 0. && beta->i == 0.) { i__3 = i__ + j * c_dim1; z__1.r = alpha->r * temp.r - alpha->i * temp.i, z__1.i = alpha->r * temp.i + alpha->i * temp.r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = alpha->r * temp.i + alpha->i * temp.r; i__4 = i__ + j * c_dim1; z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__3.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } /* L330: */ } /* L340: */ } } else { /* Form C := alpha*A**T*B**T + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp.r = 0., temp.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { i__4 = l + i__ * a_dim1; i__5 = j + l * b_dim1; z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5] .i, z__2.i = a[i__4].r * b[i__5].i + a[i__4] .i * b[i__5].r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L350: */ } if (beta->r == 0. && beta->i == 0.) { i__3 = i__ + j * c_dim1; z__1.r = alpha->r * temp.r - alpha->i * temp.i, z__1.i = alpha->r * temp.i + alpha->i * temp.r; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = alpha->r * temp.i + alpha->i * temp.r; i__4 = i__ + j * c_dim1; z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] .i, z__3.i = beta->r * c__[i__4].i + beta->i * c__[i__4].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } /* L360: */ } /* L370: */ } } } return 0; /* End of ZGEMM */ } /* zgemm_ */ #ifdef __cplusplus } #endif