/* fortran/zgerc.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b ZGERC */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) */ /* .. Scalar Arguments .. */ /* COMPLEX*16 ALPHA */ /* INTEGER INCX,INCY,LDA,M,N */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 A(LDA,*),X(*),Y(*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZGERC performs the rank 1 operation */ /* > */ /* > A := alpha*x*y**H + A, */ /* > */ /* > where alpha is a scalar, x is an m element vector, y is an n element */ /* > vector and A is an m by n matrix. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > On entry, M specifies the number of rows of the matrix A. */ /* > M must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the number of columns of the matrix A. */ /* > N must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is COMPLEX*16 */ /* > On entry, ALPHA specifies the scalar alpha. */ /* > \endverbatim */ /* > */ /* > \param[in] X */ /* > \verbatim */ /* > X is COMPLEX*16 array, dimension at least */ /* > ( 1 + ( m - 1 )*abs( INCX ) ). */ /* > Before entry, the incremented array X must contain the m */ /* > element vector x. */ /* > \endverbatim */ /* > */ /* > \param[in] INCX */ /* > \verbatim */ /* > INCX is INTEGER */ /* > On entry, INCX specifies the increment for the elements of */ /* > X. INCX must not be zero. */ /* > \endverbatim */ /* > */ /* > \param[in] Y */ /* > \verbatim */ /* > Y is COMPLEX*16 array, dimension at least */ /* > ( 1 + ( n - 1 )*abs( INCY ) ). */ /* > Before entry, the incremented array Y must contain the n */ /* > element vector y. */ /* > \endverbatim */ /* > */ /* > \param[in] INCY */ /* > \verbatim */ /* > INCY is INTEGER */ /* > On entry, INCY specifies the increment for the elements of */ /* > Y. INCY must not be zero. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension ( LDA, N ) */ /* > Before entry, the leading m by n part of the array A must */ /* > contain the matrix of coefficients. On exit, A is */ /* > overwritten by the updated matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > On entry, LDA specifies the first dimension of A as declared */ /* > in the calling (sub) program. LDA must be at least */ /* > max( 1, m ). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16_blas_level2 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Level 2 Blas routine. */ /* > */ /* > -- Written on 22-October-1986. */ /* > Jack Dongarra, Argonne National Lab. */ /* > Jeremy Du Croz, Nag Central Office. */ /* > Sven Hammarling, Nag Central Office. */ /* > Richard Hanson, Sandia National Labs. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zgerc_(integer *m, integer *n, doublecomplex *alpha, doublecomplex *x, integer *incx, doublecomplex *y, integer *incy, doublecomplex *a, integer *lda) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; doublecomplex z__1, z__2; /* Builtin functions */ void d_lmp_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, ix, jy, kx, info; doublecomplex temp; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- Reference BLAS level2 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ --x; --y; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ info = 0; if (*m < 0) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } else if (*incy == 0) { info = 7; } else if (*lda < max(1,*m)) { info = 9; } if (info != 0) { xerbla_((char *)"ZGERC ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || alpha->r == 0. && alpha->i == 0.) { return 0; } /* Start the operations. In this version the elements of A are */ /* accessed sequentially with one pass through A. */ if (*incy > 0) { jy = 1; } else { jy = 1 - (*n - 1) * *incy; } if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jy; if (y[i__2].r != 0. || y[i__2].i != 0.) { d_lmp_cnjg(&z__2, &y[jy]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L10: */ } } jy += *incy; /* L20: */ } } else { if (*incx > 0) { kx = 1; } else { kx = 1 - (*m - 1) * *incx; } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jy; if (y[i__2].r != 0. || y[i__2].i != 0.) { d_lmp_cnjg(&z__2, &y[jy]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; ix = kx; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = ix; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; ix += *incx; /* L30: */ } } jy += *incy; /* L40: */ } } return 0; /* End of ZGERC */ } /* zgerc_ */ #ifdef __cplusplus } #endif