/* fortran/zher2k.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b ZHER2K */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) */ /* .. Scalar Arguments .. */ /* COMPLEX*16 ALPHA */ /* DOUBLE PRECISION BETA */ /* INTEGER K,LDA,LDB,LDC,N */ /* CHARACTER TRANS,UPLO */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZHER2K performs one of the hermitian rank 2k operations */ /* > */ /* > C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C, */ /* > */ /* > or */ /* > */ /* > C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C, */ /* > */ /* > where alpha and beta are scalars with beta real, C is an n by n */ /* > hermitian matrix and A and B are n by k matrices in the first case */ /* > and k by n matrices in the second case. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > On entry, UPLO specifies whether the upper or lower */ /* > triangular part of the array C is to be referenced as */ /* > follows: */ /* > */ /* > UPLO = 'U' or 'u' Only the upper triangular part of C */ /* > is to be referenced. */ /* > */ /* > UPLO = 'L' or 'l' Only the lower triangular part of C */ /* > is to be referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > On entry, TRANS specifies the operation to be performed as */ /* > follows: */ /* > */ /* > TRANS = 'N' or 'n' C := alpha*A*B**H + */ /* > conjg( alpha )*B*A**H + */ /* > beta*C. */ /* > */ /* > TRANS = 'C' or 'c' C := alpha*A**H*B + */ /* > conjg( alpha )*B**H*A + */ /* > beta*C. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the order of the matrix C. N must be */ /* > at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > On entry with TRANS = 'N' or 'n', K specifies the number */ /* > of columns of the matrices A and B, and on entry with */ /* > TRANS = 'C' or 'c', K specifies the number of rows of the */ /* > matrices A and B. K must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is COMPLEX*16 . */ /* > On entry, ALPHA specifies the scalar alpha. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is */ /* > k when TRANS = 'N' or 'n', and is n otherwise. */ /* > Before entry with TRANS = 'N' or 'n', the leading n by k */ /* > part of the array A must contain the matrix A, otherwise */ /* > the leading k by n part of the array A must contain the */ /* > matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > On entry, LDA specifies the first dimension of A as declared */ /* > in the calling (sub) program. When TRANS = 'N' or 'n' */ /* > then LDA must be at least max( 1, n ), otherwise LDA must */ /* > be at least max( 1, k ). */ /* > \endverbatim */ /* > */ /* > \param[in] B */ /* > \verbatim */ /* > B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is */ /* > k when TRANS = 'N' or 'n', and is n otherwise. */ /* > Before entry with TRANS = 'N' or 'n', the leading n by k */ /* > part of the array B must contain the matrix B, otherwise */ /* > the leading k by n part of the array B must contain the */ /* > matrix B. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > On entry, LDB specifies the first dimension of B as declared */ /* > in the calling (sub) program. When TRANS = 'N' or 'n' */ /* > then LDB must be at least max( 1, n ), otherwise LDB must */ /* > be at least max( 1, k ). */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] BETA */ /* > \verbatim */ /* > BETA is DOUBLE PRECISION . */ /* > On entry, BETA specifies the scalar beta. */ /* > \endverbatim */ /* > */ /* > \param[in,out] C */ /* > \verbatim */ /* > C is COMPLEX*16 array, dimension ( LDC, N ) */ /* > Before entry with UPLO = 'U' or 'u', the leading n by n */ /* > upper triangular part of the array C must contain the upper */ /* > triangular part of the hermitian matrix and the strictly */ /* > lower triangular part of C is not referenced. On exit, the */ /* > upper triangular part of the array C is overwritten by the */ /* > upper triangular part of the updated matrix. */ /* > Before entry with UPLO = 'L' or 'l', the leading n by n */ /* > lower triangular part of the array C must contain the lower */ /* > triangular part of the hermitian matrix and the strictly */ /* > upper triangular part of C is not referenced. On exit, the */ /* > lower triangular part of the array C is overwritten by the */ /* > lower triangular part of the updated matrix. */ /* > Note that the imaginary parts of the diagonal elements need */ /* > not be set, they are assumed to be zero, and on exit they */ /* > are set to zero. */ /* > \endverbatim */ /* > */ /* > \param[in] LDC */ /* > \verbatim */ /* > LDC is INTEGER */ /* > On entry, LDC specifies the first dimension of C as declared */ /* > in the calling (sub) program. LDC must be at least */ /* > max( 1, n ). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16_blas_level3 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Level 3 Blas routine. */ /* > */ /* > -- Written on 8-February-1989. */ /* > Jack Dongarra, Argonne National Laboratory. */ /* > Iain Duff, AERE Harwell. */ /* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* > Sven Hammarling, Numerical Algorithms Group Ltd. */ /* > */ /* > -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. */ /* > Ed Anderson, Cray Research Inc. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zher2k_(char *uplo, char *trans, integer *n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex * b, integer *ldb, doublereal *beta, doublecomplex *c__, integer *ldc, ftnlen uplo_len, ftnlen trans_len) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; doublereal d__1; doublecomplex z__1, z__2, z__3, z__4, z__5, z__6; /* Builtin functions */ void d_lmp_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, l, info; doublecomplex temp1, temp2; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer nrowa; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- Reference BLAS level3 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) { nrowa = *n; } else { nrowa = *k; } upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); info = 0; if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { info = 1; } else if (! lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, (char *)"C", (ftnlen)1, (ftnlen)1)) { info = 2; } else if (*n < 0) { info = 3; } else if (*k < 0) { info = 4; } else if (*lda < max(1,nrowa)) { info = 7; } else if (*ldb < max(1,nrowa)) { info = 9; } else if (*ldc < max(1,*n)) { info = 12; } if (info != 0) { xerbla_((char *)"ZHER2K", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*n == 0 || (alpha->r == 0. && alpha->i == 0. || *k == 0) && *beta == 1.) { return 0; } /* And when alpha.eq.zero. */ if (alpha->r == 0. && alpha->i == 0.) { if (upper) { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ i__4].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L30: */ } i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; /* L40: */ } } } else { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L50: */ } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ i__4].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L70: */ } /* L80: */ } } } return 0; } /* Start the operations. */ if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) { /* Form C := alpha*A*B**H + conjg( alpha )*B*A**H + */ /* C. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L90: */ } } else if (*beta != 1.) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ i__4].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L100: */ } i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; } else { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; } i__2 = *k; for (l = 1; l <= i__2; ++l) { i__3 = j + l * a_dim1; i__4 = j + l * b_dim1; if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r != 0. || b[i__4].i != 0.)) { d_lmp_cnjg(&z__2, &b[j + l * b_dim1]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp1.r = z__1.r, temp1.i = z__1.i; i__3 = j + l * a_dim1; z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i, z__2.i = alpha->r * a[i__3].i + alpha->i * a[ i__3].r; d_lmp_cnjg(&z__1, &z__2); temp2.r = z__1.r, temp2.i = z__1.i; i__3 = j - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * c_dim1; i__5 = i__ + j * c_dim1; i__6 = i__ + l * a_dim1; z__3.r = a[i__6].r * temp1.r - a[i__6].i * temp1.i, z__3.i = a[i__6].r * temp1.i + a[ i__6].i * temp1.r; z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5] .i + z__3.i; i__7 = i__ + l * b_dim1; z__4.r = b[i__7].r * temp2.r - b[i__7].i * temp2.i, z__4.i = b[i__7].r * temp2.i + b[ i__7].i * temp2.r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; /* L110: */ } i__3 = j + j * c_dim1; i__4 = j + j * c_dim1; i__5 = j + l * a_dim1; z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i, z__2.i = a[i__5].r * temp1.i + a[i__5].i * temp1.r; i__6 = j + l * b_dim1; z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i, z__3.i = b[i__6].r * temp2.i + b[i__6].i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = c__[i__4].r + z__1.r; c__[i__3].r = d__1, c__[i__3].i = 0.; } /* L120: */ } /* L130: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L140: */ } } else if (*beta != 1.) { i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ i__4].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L150: */ } i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; } else { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; } i__2 = *k; for (l = 1; l <= i__2; ++l) { i__3 = j + l * a_dim1; i__4 = j + l * b_dim1; if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r != 0. || b[i__4].i != 0.)) { d_lmp_cnjg(&z__2, &b[j + l * b_dim1]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp1.r = z__1.r, temp1.i = z__1.i; i__3 = j + l * a_dim1; z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i, z__2.i = alpha->r * a[i__3].i + alpha->i * a[ i__3].r; d_lmp_cnjg(&z__1, &z__2); temp2.r = z__1.r, temp2.i = z__1.i; i__3 = *n; for (i__ = j + 1; i__ <= i__3; ++i__) { i__4 = i__ + j * c_dim1; i__5 = i__ + j * c_dim1; i__6 = i__ + l * a_dim1; z__3.r = a[i__6].r * temp1.r - a[i__6].i * temp1.i, z__3.i = a[i__6].r * temp1.i + a[ i__6].i * temp1.r; z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5] .i + z__3.i; i__7 = i__ + l * b_dim1; z__4.r = b[i__7].r * temp2.r - b[i__7].i * temp2.i, z__4.i = b[i__7].r * temp2.i + b[ i__7].i * temp2.r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; /* L160: */ } i__3 = j + j * c_dim1; i__4 = j + j * c_dim1; i__5 = j + l * a_dim1; z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i, z__2.i = a[i__5].r * temp1.i + a[i__5].i * temp1.r; i__6 = j + l * b_dim1; z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i, z__3.i = b[i__6].r * temp2.i + b[i__6].i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = c__[i__4].r + z__1.r; c__[i__3].r = d__1, c__[i__3].i = 0.; } /* L170: */ } /* L180: */ } } } else { /* Form C := alpha*A**H*B + conjg( alpha )*B**H*A + */ /* C. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { temp1.r = 0., temp1.i = 0.; temp2.r = 0., temp2.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]); i__4 = l + j * b_dim1; z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i, z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4] .r; z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i; temp1.r = z__1.r, temp1.i = z__1.i; d_lmp_cnjg(&z__3, &b[l + i__ * b_dim1]); i__4 = l + j * a_dim1; z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i, z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4] .r; z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; temp2.r = z__1.r, temp2.i = z__1.i; /* L190: */ } if (i__ == j) { if (*beta == 0.) { i__3 = j + j * c_dim1; z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, z__2.i = alpha->r * temp1.i + alpha->i * temp1.r; d_lmp_cnjg(&z__4, alpha); z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, z__3.i = z__4.r * temp2.i + z__4.i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = z__1.r; c__[i__3].r = d__1, c__[i__3].i = 0.; } else { i__3 = j + j * c_dim1; i__4 = j + j * c_dim1; z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, z__2.i = alpha->r * temp1.i + alpha->i * temp1.r; d_lmp_cnjg(&z__4, alpha); z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, z__3.i = z__4.r * temp2.i + z__4.i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = *beta * c__[i__4].r + z__1.r; c__[i__3].r = d__1, c__[i__3].i = 0.; } } else { if (*beta == 0.) { i__3 = i__ + j * c_dim1; z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, z__2.i = alpha->r * temp1.i + alpha->i * temp1.r; d_lmp_cnjg(&z__4, alpha); z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, z__3.i = z__4.r * temp2.i + z__4.i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[i__4].i; z__4.r = alpha->r * temp1.r - alpha->i * temp1.i, z__4.i = alpha->r * temp1.i + alpha->i * temp1.r; z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + z__4.i; d_lmp_cnjg(&z__6, alpha); z__5.r = z__6.r * temp2.r - z__6.i * temp2.i, z__5.i = z__6.r * temp2.i + z__6.i * temp2.r; z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } } /* L200: */ } /* L210: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { temp1.r = 0., temp1.i = 0.; temp2.r = 0., temp2.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]); i__4 = l + j * b_dim1; z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i, z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4] .r; z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i; temp1.r = z__1.r, temp1.i = z__1.i; d_lmp_cnjg(&z__3, &b[l + i__ * b_dim1]); i__4 = l + j * a_dim1; z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i, z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4] .r; z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; temp2.r = z__1.r, temp2.i = z__1.i; /* L220: */ } if (i__ == j) { if (*beta == 0.) { i__3 = j + j * c_dim1; z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, z__2.i = alpha->r * temp1.i + alpha->i * temp1.r; d_lmp_cnjg(&z__4, alpha); z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, z__3.i = z__4.r * temp2.i + z__4.i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = z__1.r; c__[i__3].r = d__1, c__[i__3].i = 0.; } else { i__3 = j + j * c_dim1; i__4 = j + j * c_dim1; z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, z__2.i = alpha->r * temp1.i + alpha->i * temp1.r; d_lmp_cnjg(&z__4, alpha); z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, z__3.i = z__4.r * temp2.i + z__4.i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = *beta * c__[i__4].r + z__1.r; c__[i__3].r = d__1, c__[i__3].i = 0.; } } else { if (*beta == 0.) { i__3 = i__ + j * c_dim1; z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, z__2.i = alpha->r * temp1.i + alpha->i * temp1.r; d_lmp_cnjg(&z__4, alpha); z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, z__3.i = z__4.r * temp2.i + z__4.i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[i__4].i; z__4.r = alpha->r * temp1.r - alpha->i * temp1.i, z__4.i = alpha->r * temp1.i + alpha->i * temp1.r; z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + z__4.i; d_lmp_cnjg(&z__6, alpha); z__5.r = z__6.r * temp2.r - z__6.i * temp2.i, z__5.i = z__6.r * temp2.i + z__6.i * temp2.r; z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } } /* L230: */ } /* L240: */ } } } return 0; /* End of ZHER2K */ } /* zher2k_ */ #ifdef __cplusplus } #endif