/* fortran/zhpr.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b ZHPR */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP) */ /* .. Scalar Arguments .. */ /* DOUBLE PRECISION ALPHA */ /* INTEGER INCX,N */ /* CHARACTER UPLO */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 AP(*),X(*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZHPR performs the hermitian rank 1 operation */ /* > */ /* > A := alpha*x*x**H + A, */ /* > */ /* > where alpha is a real scalar, x is an n element vector and A is an */ /* > n by n hermitian matrix, supplied in packed form. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > On entry, UPLO specifies whether the upper or lower */ /* > triangular part of the matrix A is supplied in the packed */ /* > array AP as follows: */ /* > */ /* > UPLO = 'U' or 'u' The upper triangular part of A is */ /* > supplied in AP. */ /* > */ /* > UPLO = 'L' or 'l' The lower triangular part of A is */ /* > supplied in AP. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the order of the matrix A. */ /* > N must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is DOUBLE PRECISION. */ /* > On entry, ALPHA specifies the scalar alpha. */ /* > \endverbatim */ /* > */ /* > \param[in] X */ /* > \verbatim */ /* > X is COMPLEX*16 array, dimension at least */ /* > ( 1 + ( n - 1 )*abs( INCX ) ). */ /* > Before entry, the incremented array X must contain the n */ /* > element vector x. */ /* > \endverbatim */ /* > */ /* > \param[in] INCX */ /* > \verbatim */ /* > INCX is INTEGER */ /* > On entry, INCX specifies the increment for the elements of */ /* > X. INCX must not be zero. */ /* > \endverbatim */ /* > */ /* > \param[in,out] AP */ /* > \verbatim */ /* > AP is COMPLEX*16 array, dimension at least */ /* > ( ( n*( n + 1 ) )/2 ). */ /* > Before entry with UPLO = 'U' or 'u', the array AP must */ /* > contain the upper triangular part of the hermitian matrix */ /* > packed sequentially, column by column, so that AP( 1 ) */ /* > contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ /* > and a( 2, 2 ) respectively, and so on. On exit, the array */ /* > AP is overwritten by the upper triangular part of the */ /* > updated matrix. */ /* > Before entry with UPLO = 'L' or 'l', the array AP must */ /* > contain the lower triangular part of the hermitian matrix */ /* > packed sequentially, column by column, so that AP( 1 ) */ /* > contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ /* > and a( 3, 1 ) respectively, and so on. On exit, the array */ /* > AP is overwritten by the lower triangular part of the */ /* > updated matrix. */ /* > Note that the imaginary parts of the diagonal elements need */ /* > not be set, they are assumed to be zero, and on exit they */ /* > are set to zero. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16_blas_level2 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Level 2 Blas routine. */ /* > */ /* > -- Written on 22-October-1986. */ /* > Jack Dongarra, Argonne National Lab. */ /* > Jeremy Du Croz, Nag Central Office. */ /* > Sven Hammarling, Nag Central Office. */ /* > Richard Hanson, Sandia National Labs. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zhpr_(char *uplo, integer *n, doublereal *alpha, doublecomplex *x, integer *incx, doublecomplex *ap, ftnlen uplo_len) { /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; doublereal d__1; doublecomplex z__1, z__2; /* Builtin functions */ void d_lmp_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, k, kk, ix, jx, kx, info; doublecomplex temp; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- Reference BLAS level2 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; --x; /* Function Body */ info = 0; if (! lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, (char *)"L", ( ftnlen)1, (ftnlen)1)) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } if (info != 0) { xerbla_((char *)"ZHPR ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*n == 0 || *alpha == 0.) { return 0; } /* Set the start point in X if the increment is not unity. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of the array AP */ /* are accessed sequentially with one pass through AP. */ kk = 1; if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) { /* Form A when upper triangle is stored in AP. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; if (x[i__2].r != 0. || x[i__2].i != 0.) { d_lmp_cnjg(&z__2, &x[j]); z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i; temp.r = z__1.r, temp.i = z__1.i; k = kk; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = k; i__4 = k; i__5 = i__; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i + z__2.i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; ++k; /* L10: */ } i__2 = kk + j - 1; i__3 = kk + j - 1; i__4 = j; z__1.r = x[i__4].r * temp.r - x[i__4].i * temp.i, z__1.i = x[i__4].r * temp.i + x[i__4].i * temp.r; d__1 = ap[i__3].r + z__1.r; ap[i__2].r = d__1, ap[i__2].i = 0.; } else { i__2 = kk + j - 1; i__3 = kk + j - 1; d__1 = ap[i__3].r; ap[i__2].r = d__1, ap[i__2].i = 0.; } kk += j; /* L20: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; if (x[i__2].r != 0. || x[i__2].i != 0.) { d_lmp_cnjg(&z__2, &x[jx]); z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i; temp.r = z__1.r, temp.i = z__1.i; ix = kx; i__2 = kk + j - 2; for (k = kk; k <= i__2; ++k) { i__3 = k; i__4 = k; i__5 = ix; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i + z__2.i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; ix += *incx; /* L30: */ } i__2 = kk + j - 1; i__3 = kk + j - 1; i__4 = jx; z__1.r = x[i__4].r * temp.r - x[i__4].i * temp.i, z__1.i = x[i__4].r * temp.i + x[i__4].i * temp.r; d__1 = ap[i__3].r + z__1.r; ap[i__2].r = d__1, ap[i__2].i = 0.; } else { i__2 = kk + j - 1; i__3 = kk + j - 1; d__1 = ap[i__3].r; ap[i__2].r = d__1, ap[i__2].i = 0.; } jx += *incx; kk += j; /* L40: */ } } } else { /* Form A when lower triangle is stored in AP. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; if (x[i__2].r != 0. || x[i__2].i != 0.) { d_lmp_cnjg(&z__2, &x[j]); z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i; temp.r = z__1.r, temp.i = z__1.i; i__2 = kk; i__3 = kk; i__4 = j; z__1.r = temp.r * x[i__4].r - temp.i * x[i__4].i, z__1.i = temp.r * x[i__4].i + temp.i * x[i__4].r; d__1 = ap[i__3].r + z__1.r; ap[i__2].r = d__1, ap[i__2].i = 0.; k = kk + 1; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = k; i__4 = k; i__5 = i__; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i + z__2.i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; ++k; /* L50: */ } } else { i__2 = kk; i__3 = kk; d__1 = ap[i__3].r; ap[i__2].r = d__1, ap[i__2].i = 0.; } kk = kk + *n - j + 1; /* L60: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; if (x[i__2].r != 0. || x[i__2].i != 0.) { d_lmp_cnjg(&z__2, &x[jx]); z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i; temp.r = z__1.r, temp.i = z__1.i; i__2 = kk; i__3 = kk; i__4 = jx; z__1.r = temp.r * x[i__4].r - temp.i * x[i__4].i, z__1.i = temp.r * x[i__4].i + temp.i * x[i__4].r; d__1 = ap[i__3].r + z__1.r; ap[i__2].r = d__1, ap[i__2].i = 0.; ix = jx; i__2 = kk + *n - j; for (k = kk + 1; k <= i__2; ++k) { ix += *incx; i__3 = k; i__4 = k; i__5 = ix; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i + z__2.i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; /* L70: */ } } else { i__2 = kk; i__3 = kk; d__1 = ap[i__3].r; ap[i__2].r = d__1, ap[i__2].i = 0.; } jx += *incx; kk = kk + *n - j + 1; /* L80: */ } } } return 0; /* End of ZHPR */ } /* zhpr_ */ #ifdef __cplusplus } #endif