/* fortran/ztrmm.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b ZTRMM */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE ZTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) */ /* .. Scalar Arguments .. */ /* COMPLEX*16 ALPHA */ /* INTEGER LDA,LDB,M,N */ /* CHARACTER DIAG,SIDE,TRANSA,UPLO */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 A(LDA,*),B(LDB,*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZTRMM performs one of the matrix-matrix operations */ /* > */ /* > B := alpha*op( A )*B, or B := alpha*B*op( A ) */ /* > */ /* > where alpha is a scalar, B is an m by n matrix, A is a unit, or */ /* > non-unit, upper or lower triangular matrix and op( A ) is one of */ /* > */ /* > op( A ) = A or op( A ) = A**T or op( A ) = A**H. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > On entry, SIDE specifies whether op( A ) multiplies B from */ /* > the left or right as follows: */ /* > */ /* > SIDE = 'L' or 'l' B := alpha*op( A )*B. */ /* > */ /* > SIDE = 'R' or 'r' B := alpha*B*op( A ). */ /* > \endverbatim */ /* > */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > On entry, UPLO specifies whether the matrix A is an upper or */ /* > lower triangular matrix as follows: */ /* > */ /* > UPLO = 'U' or 'u' A is an upper triangular matrix. */ /* > */ /* > UPLO = 'L' or 'l' A is a lower triangular matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] TRANSA */ /* > \verbatim */ /* > TRANSA is CHARACTER*1 */ /* > On entry, TRANSA specifies the form of op( A ) to be used in */ /* > the matrix multiplication as follows: */ /* > */ /* > TRANSA = 'N' or 'n' op( A ) = A. */ /* > */ /* > TRANSA = 'T' or 't' op( A ) = A**T. */ /* > */ /* > TRANSA = 'C' or 'c' op( A ) = A**H. */ /* > \endverbatim */ /* > */ /* > \param[in] DIAG */ /* > \verbatim */ /* > DIAG is CHARACTER*1 */ /* > On entry, DIAG specifies whether or not A is unit triangular */ /* > as follows: */ /* > */ /* > DIAG = 'U' or 'u' A is assumed to be unit triangular. */ /* > */ /* > DIAG = 'N' or 'n' A is not assumed to be unit */ /* > triangular. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > On entry, M specifies the number of rows of B. M must be at */ /* > least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the number of columns of B. N must be */ /* > at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is COMPLEX*16 */ /* > On entry, ALPHA specifies the scalar alpha. When alpha is */ /* > zero then A is not referenced and B need not be set before */ /* > entry. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension ( LDA, k ), where k is m */ /* > when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */ /* > Before entry with UPLO = 'U' or 'u', the leading k by k */ /* > upper triangular part of the array A must contain the upper */ /* > triangular matrix and the strictly lower triangular part of */ /* > A is not referenced. */ /* > Before entry with UPLO = 'L' or 'l', the leading k by k */ /* > lower triangular part of the array A must contain the lower */ /* > triangular matrix and the strictly upper triangular part of */ /* > A is not referenced. */ /* > Note that when DIAG = 'U' or 'u', the diagonal elements of */ /* > A are not referenced either, but are assumed to be unity. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > On entry, LDA specifies the first dimension of A as declared */ /* > in the calling (sub) program. When SIDE = 'L' or 'l' then */ /* > LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */ /* > then LDA must be at least max( 1, n ). */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is COMPLEX*16 array, dimension ( LDB, N ). */ /* > Before entry, the leading m by n part of the array B must */ /* > contain the matrix B, and on exit is overwritten by the */ /* > transformed matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > On entry, LDB specifies the first dimension of B as declared */ /* > in the calling (sub) program. LDB must be at least */ /* > max( 1, m ). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16_blas_level3 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Level 3 Blas routine. */ /* > */ /* > -- Written on 8-February-1989. */ /* > Jack Dongarra, Argonne National Laboratory. */ /* > Iain Duff, AERE Harwell. */ /* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* > Sven Hammarling, Numerical Algorithms Group Ltd. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int ztrmm_(char *side, char *uplo, char *transa, char *diag, integer *m, integer *n, doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, ftnlen side_len, ftnlen uplo_len, ftnlen transa_len, ftnlen diag_len) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublecomplex z__1, z__2, z__3; /* Builtin functions */ void d_lmp_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, k, info; doublecomplex temp; logical lside; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer nrowa; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); logical noconj, nounit; /* -- Reference BLAS level3 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ lside = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1); if (lside) { nrowa = *m; } else { nrowa = *n; } noconj = lsame_(transa, (char *)"T", (ftnlen)1, (ftnlen)1); nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1); upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); info = 0; if (! lside && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { info = 1; } else if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { info = 2; } else if (! lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(transa, (char *)"T", (ftnlen)1, (ftnlen)1) && ! lsame_(transa, (char *)"C", (ftnlen)1, ( ftnlen)1)) { info = 3; } else if (! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1)) { info = 4; } else if (*m < 0) { info = 5; } else if (*n < 0) { info = 6; } else if (*lda < max(1,nrowa)) { info = 9; } else if (*ldb < max(1,*m)) { info = 11; } if (info != 0) { xerbla_((char *)"ZTRMM ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0) { return 0; } /* And when alpha.eq.zero. */ if (alpha->r == 0. && alpha->i == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; b[i__3].r = 0., b[i__3].i = 0.; /* L10: */ } /* L20: */ } return 0; } /* Start the operations. */ if (lside) { if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) { /* Form B := alpha*A*B. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (k = 1; k <= i__2; ++k) { i__3 = k + j * b_dim1; if (b[i__3].r != 0. || b[i__3].i != 0.) { i__3 = k + j * b_dim1; z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3] .i, z__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3].r; temp.r = z__1.r, temp.i = z__1.i; i__3 = k - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * b_dim1; i__5 = i__ + j * b_dim1; i__6 = i__ + k * a_dim1; z__2.r = temp.r * a[i__6].r - temp.i * a[i__6] .i, z__2.i = temp.r * a[i__6].i + temp.i * a[i__6].r; z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5] .i + z__2.i; b[i__4].r = z__1.r, b[i__4].i = z__1.i; /* L30: */ } if (nounit) { i__3 = k + k * a_dim1; z__1.r = temp.r * a[i__3].r - temp.i * a[i__3] .i, z__1.i = temp.r * a[i__3].i + temp.i * a[i__3].r; temp.r = z__1.r, temp.i = z__1.i; } i__3 = k + j * b_dim1; b[i__3].r = temp.r, b[i__3].i = temp.i; } /* L40: */ } /* L50: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { for (k = *m; k >= 1; --k) { i__2 = k + j * b_dim1; if (b[i__2].r != 0. || b[i__2].i != 0.) { i__2 = k + j * b_dim1; z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2] .i, z__1.i = alpha->r * b[i__2].i + alpha->i * b[i__2].r; temp.r = z__1.r, temp.i = z__1.i; i__2 = k + j * b_dim1; b[i__2].r = temp.r, b[i__2].i = temp.i; if (nounit) { i__2 = k + j * b_dim1; i__3 = k + j * b_dim1; i__4 = k + k * a_dim1; z__1.r = b[i__3].r * a[i__4].r - b[i__3].i * a[i__4].i, z__1.i = b[i__3].r * a[ i__4].i + b[i__3].i * a[i__4].r; b[i__2].r = z__1.r, b[i__2].i = z__1.i; } i__2 = *m; for (i__ = k + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; i__4 = i__ + j * b_dim1; i__5 = i__ + k * a_dim1; z__2.r = temp.r * a[i__5].r - temp.i * a[i__5] .i, z__2.i = temp.r * a[i__5].i + temp.i * a[i__5].r; z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4] .i + z__2.i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; /* L60: */ } } /* L70: */ } /* L80: */ } } } else { /* Form B := alpha*A**T*B or B := alpha*A**H*B. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { for (i__ = *m; i__ >= 1; --i__) { i__2 = i__ + j * b_dim1; temp.r = b[i__2].r, temp.i = b[i__2].i; if (noconj) { if (nounit) { i__2 = i__ + i__ * a_dim1; z__1.r = temp.r * a[i__2].r - temp.i * a[i__2] .i, z__1.i = temp.r * a[i__2].i + temp.i * a[i__2].r; temp.r = z__1.r, temp.i = z__1.i; } i__2 = i__ - 1; for (k = 1; k <= i__2; ++k) { i__3 = k + i__ * a_dim1; i__4 = k + j * b_dim1; z__2.r = a[i__3].r * b[i__4].r - a[i__3].i * b[i__4].i, z__2.i = a[i__3].r * b[ i__4].i + a[i__3].i * b[i__4].r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L90: */ } } else { if (nounit) { d_lmp_cnjg(&z__2, &a[i__ + i__ * a_dim1]); z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } i__2 = i__ - 1; for (k = 1; k <= i__2; ++k) { d_lmp_cnjg(&z__3, &a[k + i__ * a_dim1]); i__3 = k + j * b_dim1; z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3] .i, z__2.i = z__3.r * b[i__3].i + z__3.i * b[i__3].r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L100: */ } } i__2 = i__ + j * b_dim1; z__1.r = alpha->r * temp.r - alpha->i * temp.i, z__1.i = alpha->r * temp.i + alpha->i * temp.r; b[i__2].r = z__1.r, b[i__2].i = z__1.i; /* L110: */ } /* L120: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; temp.r = b[i__3].r, temp.i = b[i__3].i; if (noconj) { if (nounit) { i__3 = i__ + i__ * a_dim1; z__1.r = temp.r * a[i__3].r - temp.i * a[i__3] .i, z__1.i = temp.r * a[i__3].i + temp.i * a[i__3].r; temp.r = z__1.r, temp.i = z__1.i; } i__3 = *m; for (k = i__ + 1; k <= i__3; ++k) { i__4 = k + i__ * a_dim1; i__5 = k + j * b_dim1; z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5].i, z__2.i = a[i__4].r * b[ i__5].i + a[i__4].i * b[i__5].r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L130: */ } } else { if (nounit) { d_lmp_cnjg(&z__2, &a[i__ + i__ * a_dim1]); z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } i__3 = *m; for (k = i__ + 1; k <= i__3; ++k) { d_lmp_cnjg(&z__3, &a[k + i__ * a_dim1]); i__4 = k + j * b_dim1; z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4] .i, z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4].r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L140: */ } } i__3 = i__ + j * b_dim1; z__1.r = alpha->r * temp.r - alpha->i * temp.i, z__1.i = alpha->r * temp.i + alpha->i * temp.r; b[i__3].r = z__1.r, b[i__3].i = z__1.i; /* L150: */ } /* L160: */ } } } } else { if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) { /* Form B := alpha*B*A. */ if (upper) { for (j = *n; j >= 1; --j) { temp.r = alpha->r, temp.i = alpha->i; if (nounit) { i__1 = j + j * a_dim1; z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, z__1.i = temp.r * a[i__1].i + temp.i * a[i__1] .r; temp.r = z__1.r, temp.i = z__1.i; } i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + j * b_dim1; i__3 = i__ + j * b_dim1; z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, z__1.i = temp.r * b[i__3].i + temp.i * b[i__3] .r; b[i__2].r = z__1.r, b[i__2].i = z__1.i; /* L170: */ } i__1 = j - 1; for (k = 1; k <= i__1; ++k) { i__2 = k + j * a_dim1; if (a[i__2].r != 0. || a[i__2].i != 0.) { i__2 = k + j * a_dim1; z__1.r = alpha->r * a[i__2].r - alpha->i * a[i__2] .i, z__1.i = alpha->r * a[i__2].i + alpha->i * a[i__2].r; temp.r = z__1.r, temp.i = z__1.i; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; i__4 = i__ + j * b_dim1; i__5 = i__ + k * b_dim1; z__2.r = temp.r * b[i__5].r - temp.i * b[i__5] .i, z__2.i = temp.r * b[i__5].i + temp.i * b[i__5].r; z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4] .i + z__2.i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; /* L180: */ } } /* L190: */ } /* L200: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp.r = alpha->r, temp.i = alpha->i; if (nounit) { i__2 = j + j * a_dim1; z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, z__1.i = temp.r * a[i__2].i + temp.i * a[i__2] .r; temp.r = z__1.r, temp.i = z__1.i; } i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; i__4 = i__ + j * b_dim1; z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, z__1.i = temp.r * b[i__4].i + temp.i * b[i__4] .r; b[i__3].r = z__1.r, b[i__3].i = z__1.i; /* L210: */ } i__2 = *n; for (k = j + 1; k <= i__2; ++k) { i__3 = k + j * a_dim1; if (a[i__3].r != 0. || a[i__3].i != 0.) { i__3 = k + j * a_dim1; z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3] .i, z__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3].r; temp.r = z__1.r, temp.i = z__1.i; i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * b_dim1; i__5 = i__ + j * b_dim1; i__6 = i__ + k * b_dim1; z__2.r = temp.r * b[i__6].r - temp.i * b[i__6] .i, z__2.i = temp.r * b[i__6].i + temp.i * b[i__6].r; z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5] .i + z__2.i; b[i__4].r = z__1.r, b[i__4].i = z__1.i; /* L220: */ } } /* L230: */ } /* L240: */ } } } else { /* Form B := alpha*B*A**T or B := alpha*B*A**H. */ if (upper) { i__1 = *n; for (k = 1; k <= i__1; ++k) { i__2 = k - 1; for (j = 1; j <= i__2; ++j) { i__3 = j + k * a_dim1; if (a[i__3].r != 0. || a[i__3].i != 0.) { if (noconj) { i__3 = j + k * a_dim1; z__1.r = alpha->r * a[i__3].r - alpha->i * a[ i__3].i, z__1.i = alpha->r * a[i__3] .i + alpha->i * a[i__3].r; temp.r = z__1.r, temp.i = z__1.i; } else { d_lmp_cnjg(&z__2, &a[j + k * a_dim1]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * b_dim1; i__5 = i__ + j * b_dim1; i__6 = i__ + k * b_dim1; z__2.r = temp.r * b[i__6].r - temp.i * b[i__6] .i, z__2.i = temp.r * b[i__6].i + temp.i * b[i__6].r; z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5] .i + z__2.i; b[i__4].r = z__1.r, b[i__4].i = z__1.i; /* L250: */ } } /* L260: */ } temp.r = alpha->r, temp.i = alpha->i; if (nounit) { if (noconj) { i__2 = k + k * a_dim1; z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, z__1.i = temp.r * a[i__2].i + temp.i * a[ i__2].r; temp.r = z__1.r, temp.i = z__1.i; } else { d_lmp_cnjg(&z__2, &a[k + k * a_dim1]); z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } } if (temp.r != 1. || temp.i != 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + k * b_dim1; i__4 = i__ + k * b_dim1; z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, z__1.i = temp.r * b[i__4].i + temp.i * b[ i__4].r; b[i__3].r = z__1.r, b[i__3].i = z__1.i; /* L270: */ } } /* L280: */ } } else { for (k = *n; k >= 1; --k) { i__1 = *n; for (j = k + 1; j <= i__1; ++j) { i__2 = j + k * a_dim1; if (a[i__2].r != 0. || a[i__2].i != 0.) { if (noconj) { i__2 = j + k * a_dim1; z__1.r = alpha->r * a[i__2].r - alpha->i * a[ i__2].i, z__1.i = alpha->r * a[i__2] .i + alpha->i * a[i__2].r; temp.r = z__1.r, temp.i = z__1.i; } else { d_lmp_cnjg(&z__2, &a[j + k * a_dim1]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; i__4 = i__ + j * b_dim1; i__5 = i__ + k * b_dim1; z__2.r = temp.r * b[i__5].r - temp.i * b[i__5] .i, z__2.i = temp.r * b[i__5].i + temp.i * b[i__5].r; z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4] .i + z__2.i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; /* L290: */ } } /* L300: */ } temp.r = alpha->r, temp.i = alpha->i; if (nounit) { if (noconj) { i__1 = k + k * a_dim1; z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, z__1.i = temp.r * a[i__1].i + temp.i * a[ i__1].r; temp.r = z__1.r, temp.i = z__1.i; } else { d_lmp_cnjg(&z__2, &a[k + k * a_dim1]); z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } } if (temp.r != 1. || temp.i != 0.) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + k * b_dim1; i__3 = i__ + k * b_dim1; z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, z__1.i = temp.r * b[i__3].i + temp.i * b[ i__3].r; b[i__2].r = z__1.r, b[i__2].i = z__1.i; /* L310: */ } } /* L320: */ } } } } return 0; /* End of ZTRMM */ } /* ztrmm_ */ #ifdef __cplusplus } #endif